Skip to main content
Log in

Minimal area problems for functions with integral representation

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We study the minimization problem for the Dirichlet integral in some standard classes of analytic functions. In particular, we solve the minimal areaa 2-problem for convex functions and for typically real functions. The latter gives a new solution to the minimal areaa 2-problem for the classS of normalized univalent functions in the unit disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [ASh1] D. Aharonov and H. Shapiro,A minimal-area problem in conformal mapping, inProceedings of the Symposium on Complex Analysis (Univ. Kent, Canterbury, 1973), Cambridge Univ. Press, London, 1974, pp. 1–5.

    Google Scholar 

  • [ASh2] D. Aharonov and H. Shapiro,Domains on which analytic functions satisfy quadrature identities, J. Analyse Math.30 (1976), 39–73.

    MATH  MathSciNet  Google Scholar 

  • [ASh3] D. Aharonov and H. Shapiro,A minimal area problem in conformal mapping—Preliminary Report, II, Royal Institute of Technology Reseach Report, Stockholm 1978, TRITA-MAT-1978-5.

  • [AShS1] D. Aharonov, H. S. Shapiro and A. Yu. Solynin,A minimal area problem in conformal mapping, J. Analyse Math.78 (1999), 157–176.

    MATH  MathSciNet  Google Scholar 

  • [AShS2] D. Aharonov, H. S. Shapiro and A. Yu. Solynin,A minimal area problem in conformal mapping II, J. Analyse Math.82 (2001), 259–288.

    MathSciNet  Google Scholar 

  • [BPS] R. W. Barnard, K. Pearce and A. Yu. Solynin,Area, width, and logarithmic capacity of convex sets, Pacific J. Math.212 (2003), 13–23.

    Article  MATH  MathSciNet  Google Scholar 

  • [BRS] R. W. Barnard, C. Richardson and A. Yu. Solynin,Concentration of area in half-planes, Proc. Amer. Math. Soc.133 (2005), 2091–2099.

    Article  MATH  MathSciNet  Google Scholar 

  • [BS] R. W. Barnard and A. Yu. Solynin,Local variations and minimal area problem for Carathéodory functions, Indiana Univ. Math. J.53 (2004), 135–167.

    Article  MATH  MathSciNet  Google Scholar 

  • [Du] V. N. Dubinin,Symmetrization in geometric theory of functions of a complex variable, Uspehi Mat. Nauk49 (1994), 3–76 (in Russian): English translation in Russian Math. Surveys49:1 (1994), 1–79.

    MathSciNet  Google Scholar 

  • [D] P. Duren,Univalent Functions, Springer-Verlag, New York, 1980.

    Google Scholar 

  • [DSc] P. Duren and A. Schuster,Bergman Spaces, American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  • [HM] D. J. Hallcnbeck and T. H. MacGregor,Linear Problems and Convexity Techniques in Geometric Function Theory, Pitman, Boston, 1984.

    Google Scholar 

  • [H] W. K. Hayman,Multivalent Functions, Cambridge Univ. Press, Cambridge, Boston, 1958.

    MATH  Google Scholar 

  • [L] J. Lewis,On the omitted area problem, Indiana Univ. Math. J.34 (1985), 631–661.

    Article  MATH  MathSciNet  Google Scholar 

  • [N] Z. Nehari,Conformal Mapping, McGraw-Hill, New York, 1952.

    MATH  Google Scholar 

  • [P] Chr. Pommerenke,Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

    MATH  Google Scholar 

  • [Sh] H. S. Shapiro,The Schwarz Function and Its Generalization to Higher Dimenstons, Wiley Interscience, New York, 1992.

    Google Scholar 

  • [Z] S. Zemyan,On a maximal outer area problem for a class of meromorphic univalent functions, Bull. Austral Math. Soc.34 (1986), 433–445.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Aharonov.

Additional information

Supported by NSF grant DMS-0412908.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharonov, D., Shapiro, H.S. & Solynin, A.Y. Minimal area problems for functions with integral representation. J. Anal. Math. 98, 83–111 (2006). https://doi.org/10.1007/BF02790271

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790271

Keywords

Navigation