Advertisement

Journal d’Analyse Mathématique

, Volume 59, Issue 1, pp 161–177 | Cite as

On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications

  • Roger D. Nussbaum
  • Yehuda Pinchover
Article

Keywords

Variational Principle Elliptic Operator Variational Formula Principal Eigenvalue Minimax Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon,On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, inMethods of Functional Analysis and Theory of Elliptic Equations, ed. D. Greco, Liguori, Naples, 1982, pp. 19–52.Google Scholar
  2. [2]
    W. Allegreto and A. B. Mingarelli,On the non-existence of positive solutions for a Schrödinger equation with an indefinite weight-function, C. R. Math. Rep. Acad. Sci. Canada8 (1986), 69–73.MathSciNetGoogle Scholar
  3. [3]
    M. BrelotOn Topologies and Boundaries in Potential Theory, Lecture Notes in Mathematics175, Springer-Verlag, Berlin, 1971.zbMATHGoogle Scholar
  4. [4]
    R. S. Cantrell and C. Cosner,Diffusive logistic equations with indefinite weights: population models in disrupted environments, Proc. Roy. Soc. Edinburgh112A (1989), 293–318.MathSciNetGoogle Scholar
  5. [5]
    R. S. Cantrell and C. Cosner,Diffusive logistic equations with indefinite weights: population models in disrupted environments II, Siam J. Math. Anal.22 (1991), 1043–1064.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. D. Donsker and S. R. S. Varadhan,On a variational formula for the principal eigenvalue for operators with maximum principle, Proc. Natl. Acad. Sci. U.S.A.72 (1975), 780–783.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. D. Donsker and S. R. S. Varadhan,On the principal eigenvalue of second-order elliptic differential operators, Comm. Pure Appl. Math.29 (1976), 595–621.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    C. Holland,A minimum principle for the principal eigenvalue for second order linear elliptic equations with natural boundary conditions. Comm. Pure Appl. Math.31 (1978), 509–519.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Y. Kifer,Principal eigenvalues, topological pressure, and stochastic stability of equilibrium states, Isr. J. Math.70 (1990), 1–47.zbMATHMathSciNetGoogle Scholar
  10. [10]
    R. D. Nussbaum,Positive operators and elliptic eigenvalue problems, Math. Z.186 (1984), 247–264.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. D. Nussbaum,Convexity and log convexity for the spectral radius, Linear Algebra Appl.73 (1986), 59–122.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    R. D. Nussbaum and Y. Pinchover,On variational formulas for the generalized principal eigenvalue of second order elliptic equations with general boundary conditions, in preparation.Google Scholar
  13. [13]
    Y. Pinchover,On positive solutions of second-order elliptic equations, stability results and classification, Duke Math. J.57 (1988), 955–980.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Y. Pinchover,On criticality and ground states of second-order elliptic equations II, J. Differential Equations87 (1990), 353–364.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    R. G. Pinsky,A generalized Dirichlet principle for second order nonselfadjoint elliptic operators, SIAM J. Math. Anal.19 (1988), 204–213.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    M. H. Protter and H. F. Weinberger,On the spectrum of general second order operators, Bull. Am. Math. Soc.72 (1966), 251–255.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics. 1. Functional Analysis, revised edition, Academic Press, New York, 1980.Google Scholar
  18. [18]
    M. Schechter,Hamiltonians for singular potentials, Indiana Univ. Math. J.22 (1972), 483–503.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Schechter,Exact estimates for potentials, SIAM J. Math. Anal.19 (1988), 1324–1328.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    M. Schechter,The spectrum of the Schrödinger operator, Trans. Am. Math., Soc.312 (1989) 115–128.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    M. Schechter,Multiplication operators, Can. J. Math.61 (1989), 234–249.MathSciNetGoogle Scholar
  22. [22]
    M. Sion,On general minimax theorems, Pacific. J. Math.8 (1958), 171–176.zbMATHMathSciNetGoogle Scholar

Copyright information

© The Magnes Press, The Hebrew University 1992

Authors and Affiliations

  • Roger D. Nussbaum
    • 1
  • Yehuda Pinchover
    • 2
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA
  2. 2.Department of MathematicsTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations