Skip to main content
Log in

A poisson formula for solvable Lie groups

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

Given a probability measure μ on a locally compact second countable groupG the space of bounded μ-harmonic functions can be identified withL (η, α) where (η, α) is a BorelG-space with a σ-finite quasiinvariant measure α. Our goal is to show that when μ is an arbitrary spread out probability measure on a connected solvable Lie groupG then the μ-boundary (η, α) is a contractive homogeneous space ofG. Our approach is based on a study of a class of strongly approximately transitive (SAT) actions ofG. A BorelG-space η with a σ-finite quasiinvariant measure α is called SAT if it admits a probability measurev≪α, such that for every Borel set A with α(A)≠0 and every ε>0 there existsgG with ν(gA)>1−ε. Every μ-boundary is a standard SATG-space. We show that for a connected solvable Lie group every standard SATG-space is transitive, characterize subgroupsHG such that the homogeneous spaceG/H is SAT, and establish that the following conditions are equivalent forG/H: (a)G/H is SAT; (b)G/H is contractive; (c)G/H is an equivariant image of a μ-boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Auslander and C. C. Moore,Unitary representations of solvable Lie groups, Memoirs Amer. Math. Soc., No. 62 (1966).

  2. R. Azencott,Espaces de Poisson des groupes localement compacts, Lecture Notes in Mathematics, Vol. 148, Springer, Berlin, 1970.

    MATH  Google Scholar 

  3. N. Bourbaki,Éléments de mathématique. Groupes et algèbres de Lie, Chap. I, Hermann Paris, 1960.

    Google Scholar 

  4. N. Bourbaki,Eléments de mathématique. Groupes et algèbres de Lie, Chaps. VII, VIII, Hermann, Paris, 1975.

    Google Scholar 

  5. C. Chevalley,Théorie des groupes de Lie, Hermann, Paris, 1968.

    MATH  Google Scholar 

  6. A. Connes and E. J. Woods,Approximately transitive flows and ITPFI factors, Ergodic Theory and Dynamical Systems5 (1985), 203–236.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Dunford and J. T. Schwartz,Linear Operators I, Wiley, New York, 1988.

    MATH  Google Scholar 

  8. H. Furstenberg,A Poisson formula for semisimple Lie groups, Ann. Math.77 (1963), 335–385.

    Article  MathSciNet  Google Scholar 

  9. H. Furstenberg,Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math., Vol. 26:Harmonic Analysis on Homogeneous Spaces, AMS, Providence, R.I., 1973, pp. 193–229.

    Google Scholar 

  10. H. Heyer,Probability Measures on Locally Compact Groups, Springer, Berlin, 1977.

    MATH  Google Scholar 

  11. W. Jaworski,Poisson and Furstenberg boundaries of random walks, C.R. Math. Rep. Acad. Sci. CanadaXIII (1991), 279–284.

    MathSciNet  Google Scholar 

  12. W. Jaworski,Strongly approximately transitive group actions, the Choquet-Deny theorem, and polynomial growth, Pacific J. Math.165 (1994), 115–129.

    MATH  MathSciNet  Google Scholar 

  13. W. Jaworski,Exponential boundedness and amenability of open subsemigroups of locally compact groups, Canadian J Math.46 (1994), 1263–1274.

    MATH  MathSciNet  Google Scholar 

  14. W. Jaworski,On the asymptotic and invariant σ-algebras of random walks on locally compact groups, Probability Theory and Related Fields101 (1995), 147–171.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Jaworski,STrong approximate transitivity, polynomial growth, and spread out random walks on locally compact groups, Pacific J. Math.170 (1995), 517–533.

    MATH  MathSciNet  Google Scholar 

  16. W. Jaworski,Contractive automorphisms of locally compact groups and the concentration function problem, preprint, 34 pp.

  17. G. M. Mackey,Borel structures in groups and their duals, Trans. Amer. Math Soc.85 (1957), 134–165.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. W. Mackey,Point realizations of transformation groups, Illinois J. Math.6 (1962), 327–335.

    MATH  MathSciNet  Google Scholar 

  19. W. Moran and G. A. Willis,Boundaries and modular ideals on locally compact groups, Proc. Amer. Math. Soc.112 (1991), 819–827.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Neveu,Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.

    MATH  Google Scholar 

  21. O. A. Nielsen,Direct Integral Theory, Lecture Notes in Pure and Applied Math., Vol. 61 Marcel Dekker, New York, 1980.

    MATH  Google Scholar 

  22. A. Raugi,Fonctions harmoniques sur les, groupes localement compacts a base denombrable, Bull. Soc. Math. France, Mémoire54 (1977), 5–118.

    MATH  MathSciNet  Google Scholar 

  23. D. Revuz,Markov Chains, North-Holland, Amsterdam, 1975.

    MATH  Google Scholar 

  24. V. S. Varadarajan,Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc.109 (1963), 191–220.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. L. Zabel,A note on translation conslation continuity of probability measures, Ann. Probab.20 (1992), 410–420.

    Article  MathSciNet  Google Scholar 

  26. R. J. Zimmer,Ergodic Theory and Semisimple Groups, Birkhauser, Boston, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaworski, W. A poisson formula for solvable Lie groups. J. Anal. Math. 68, 183–208 (1996). https://doi.org/10.1007/BF02790209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790209

Keywords

Navigation