Skip to main content
Log in

Antioxidant status and lipid peroxidation in athymic mice xenografted with two types of human tumors

  • Part III Cancer and Immunity
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Antioxidants and reactive oxygen species are considered to play an important role in experimental in vivo carcinogenesis studies. We attempted in this study to evaluate the repercussions on the antioxidant and lipid peroxide status of the growth of human malignant tumors xenografted into athymic mice. We selected three tumor models: two urothelial carcinomas (bladder tumors stage 3) and one brain tumor (glioblastoma stage 4). All these tumors exhibited a fast growth pattern when xenografted into athymic mice. Tumoral tissue was implanted subcutaneously. After growth establishment each tumor size was measured at regular intervals: every 2 d for bladder tumor and twice a week for glioblastoma. The period of observation was 3 wk for bladder tumors and 5 wk for glioblastoma. At the end of the observation period, all mice were sacrificed; tumoral tissue was taken and blood collected. Superoxide dismutase activity (SOD), glutathione peroxidase activity (GSH-Px), zinc (Zn), selenium (Se), and thiobarbituric acid reactive substances (TBARS) were measured in blood. TBARS alone were measured into tumoral tissue. A modification of the antioxidant blood status was observed in mice xenografted with bladder tumors with decrease in Se status and GSH-Px activities, and increase in TBARS. Such an effect was absent in mice xenografted with glioblastoma. It would appear that an oxygen-mediated stress exists in the animal bearing an implanted tumor compared with the control group, and that tumoral tissue itself is able to induce an oxidative stress into its host. All this leads to a disturbance of the antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Daune, and R. P. P. Fuchs,La Recherche 115, 1066–1077 (1980).

    Google Scholar 

  2. V. N., Singh, and S. K. Gaby,Am. J. Clin. Nutr. 53, 386S-390S (1991).

    PubMed  CAS  Google Scholar 

  3. C. Borek,Free Radical Res. Commun. 12–13, 745–750 (1991).

    Google Scholar 

  4. Y. Sun,Free Radical Biol. Med. 8, 583–599 (1990).

    Article  CAS  Google Scholar 

  5. J. Riondel, M. Jacrot, H. Fessi, F. Puisieux, and P. Potier,In Vivo 6, 23–28 (1992).

    PubMed  CAS  Google Scholar 

  6. J. Riondel, M. Jacrot, F. Picot, H. Beriel, C. Mouriquand, and P. Potier,Cancer Chemother. Pharmacol. 17, 137–142 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. J. Rygaard and C. O. Polvsen,Experimental Biology and Oncology, vol. IV, H. L. Foster, J. D. Small and J. G. Fox, eds. Academic pp. 51–67 (1982).

    Google Scholar 

  8. J. Riondel, M. Jacrot, M. F. Nissou, F. Picot, H. Beriel, C. Mouriquand, and P. Potier,Anticancer Res. 8, 387–390 (1988).

    PubMed  CAS  Google Scholar 

  9. B. K. Sinha, and E. G. Mimnaugh,Free Radical Biol. Med. 8, 567–581 (1990).

    Article  CAS  Google Scholar 

  10. M. M. Tomayko, and P. C. Reynolds,Cancer Chemother. Pharmacol. 24, 265–275 (1989).

    Article  Google Scholar 

  11. A. Favier, J. L. Lafond, B. Desrousseaux, and J. Arnaud inTrace Element Analytical Chemistry in Medicine and Biology, vol. 3, P. Bratter and P. Schramel, eds., de Gruyter, Berlin, pp. 711–718 (1984).

    Google Scholar 

  12. J. Neve, F. Vertongen, A. Peretz, and Y. A. Carpentier,Ann. Biol. Clin. 47, 138–143 (1989).

    CAS  Google Scholar 

  13. W. A. Gunzler, H. Kremers, and L. Flohe,Z. Klin. Chem. Klin. Biochem. 12, 444–448 (1974).

    PubMed  CAS  Google Scholar 

  14. S. L. Marklund,J. Biol. Chem. 251, 7504–7507 (1976).

    PubMed  CAS  Google Scholar 

  15. M. J. Richard, B. Portal, J. Meo, C. Coudray, A. Hadjian, and A. Favier,Clin. Chem. 38/5, 704–709 (1992).

    Google Scholar 

  16. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  17. M. J. Richard, P. Guiraud, J. Meo, and A. Favier,J. of Chromatography 577, 9–18 (1992).

    Article  CAS  Google Scholar 

  18. L. C. Clark,Fed. Proc. 44, 2584–2589 (1985).

    PubMed  CAS  Google Scholar 

  19. M. R. L’Abbe, P. W. F. Fischer, K. D. Trick, and E. R. Chavez,Nutr. Res. 10, 1431–1439 (1990).

    Article  Google Scholar 

  20. D. J. Hunter, J. S. Morris, M. J. Stampfer, G. A. Colditz, F. E. Speizer, and W. C. Willet,JAMA 264/9, 1128–1131 (1990).

    Article  Google Scholar 

  21. R. J. Shamberger and D. V. Frost,Cancer Med. Assoc. 100, 682 (1969).

    CAS  Google Scholar 

  22. J. T. Salonen, N. Salonen, R. Lappetelainen, P. H. Maenpaa, G. Alftthan, and P. Puska,Br. Med. J 290, 417–420 (1985).

    Article  CAS  Google Scholar 

  23. C. Deffuant, P. Cellerier, P. Litoux, and B. Dreno, Congrès annuel de recherches dermatologiques, Limoges (1992).

  24. L. N. Vernie, M. De Vries, C. Benckhuijsen, J. J. M. De Goeij, and C. Zegers,Cancer Lett. 18, 283–289 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. K. Veda, T. Yoshioka, Y. Takemara, and K. Abe,Biochem. Int. 7, 663–669 (1983).

    Google Scholar 

  26. D. Malvy, B. Burtschy, J. Arnaud, D. Sommelet, G. Leverger, L. Dostalova, J. Drucker, O. Amedee-Manesme, and the “Cancer in children and antioxidant micronutrients” French Study Group,Int. J. Epidemiol. 22, 761–771 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. D. Roy, and J. G. Liehr,Cancer Res. 49, 1475–1480 (1989).

    PubMed  CAS  Google Scholar 

  28. J. Gromadzinska, M. Sklodowska, and W. Wazowicz,Biomed. Biochem. Acta 47, 19–24 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauchez, A.S., Riondel, J., Jacrot, M. et al. Antioxidant status and lipid peroxidation in athymic mice xenografted with two types of human tumors. Biol Trace Elem Res 47, 103–109 (1995). https://doi.org/10.1007/BF02790106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790106

Index Entries

Navigation