Skip to main content
Log in

Effect of iron and phagocytosis on murine macrophage activation in vitro

  • Part I Free Radical Stress: Interactions with Trace Elements or Vitamins
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron-exposed murine macrophages have a modified bactericidal activity as shown by previous observations. In order to assess the role of iron in macrophage activation, as measured by free radical production and by intracellular bacterial killing, murine peritoneal macrophages were cultivated in the presence of various sources of iron, human iron-saturated transferrin and ammonium ferric citrate, or iron chelators, Desferal, and human Apo-transferrin, and were infected with an enteropathogenic strain ofE. coli. The release of nitrite (NO2 ), and the production of superoxide anion (O2 ) and hydrogen peroxide (H2O2) by the phagocytes were measured and compared to the production by uninfected macrophages. The synergistic action with murine r.IFN-γ was also studied in the radical production reaction and for the bactericidal activity of macrophages. Our results show that in vitro phagocytosis ofE. coli induced elevated production of NO2 and H2O2 by macrophages, and that oxygen derivatives were released independently of the presence of added iron or chelator. Despite a phagocytosis-related enhancement of NO2 release, reactive nitrogen intermediates (RNI) are not directly involved in the bactericidal mechanism, as revealed by increased intracellular killing owing to RNI inhibitors. Moreover, bacterial killing may depend on oxygen derivatives, as suggested by the effect of the antioxidant sodium ascorbate leading to both a diminished H2O2 production and a decreased bactericidal activity of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Weinberg,Microbiol. Rev. 42, 45 (1978).

    PubMed  CAS  Google Scholar 

  2. R. A. Finkelstein, C. V. Sciortino, and M. A. McIntosh,Rev. Infect. Dis. 5, S759 (1983).

    CAS  Google Scholar 

  3. G. Lebek and H. M. Gruenig,Infect. Immun. 50 (3), 682 (1985).

    PubMed  CAS  Google Scholar 

  4. H. Chart, S. M. Scotland, and B. Rowe,FEMS Microbiol. Lett. 48, 385 (1987).

    Article  CAS  Google Scholar 

  5. M. J. Bjorn, B. H. Iglewski, S. K. Ives, J. C. Sadoff, and M. L. Vasil,Infect. Immun. 19 (3), 785 (1978).

    PubMed  CAS  Google Scholar 

  6. B. Sugarman,J. Med. Microbiol. 13, 351 (1980).

    PubMed  CAS  Google Scholar 

  7. Y. Gauthier and P. Isoard,Biochem. J. 241, 273 (1987).

    Google Scholar 

  8. O. I. Aruoma and B. Halliwell,Biochem. J. 241, 273 (1987).

    PubMed  CAS  Google Scholar 

  9. V. M. Samokyszyn, C. E. Thomas, D. W. Reif, M. Saito, and S. D. Aust,Drug Metab. Rev. 19, 283 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. B. Halliwell and J. M. C. Gutteridge,Free Radicals in Biology and Medicine. Clarendon Press, Oxford (1989).

    Google Scholar 

  11. D. W. Reif,Free Radic. Biol. Med. 12, 417 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. E. D. Weinberg,Life Sci. 50, 1289 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Gauthier and P. Isoard,Pathobiol. 60 (S1), 9 (1992).

    Google Scholar 

  14. A. H. Ding, C. F. Nathan, D. J. Stuehr,J. Immunol. 141, 2407 (1988).

    PubMed  CAS  Google Scholar 

  15. E. Pick, inMethods in Enzymology, vol. 132 (5), G. Di Sabato and J. Everse, eds., Academic Press, Orlando, FL, pp. 407–421 (1986).

    Google Scholar 

  16. D. L. Granger and A. L. Lehninger,J. Cell Biol. 95, 527 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. J. R. Lancaster and J. B. Hibbs,Proc. Natl. Acad. Sci. USA 87, 1223 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. R. Radi, J. S. Beckman, K. M. Bush, and B. A. Freeman,Arch. Biochem. Biophys. 288, 481 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman,Proc. Natl. Acad. Sci. USA 87, 1620 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. W. H. Koppenol, J. J. Moreno, W. A. Pryor, H. Ischiropoulos, and J. S. Beckman,Chem. Res. Toxicol. 5 (6), 834 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. R. M. Clancy, J. Leszczynska-Piziak, and S. B. Abramson,J. Clin. Invest. 90, 1116 (1992).

    PubMed  CAS  Google Scholar 

  22. J. Sternberg and F. Mc.Guigan,Eur. J. Immunol. 22, 2741 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. B. K. Al-Ramadi, J. J. Meissler Jr, D. Huang, and T. K. Eisenstein,Eur. J. Immunol. 22, 2249 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. J. E. Albina, M. D. Caldwell, W. L. Henry, Jr. and C. D. Mills,J. Exp. Med. 169, 1021 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. D. M. Teale and A. M. Atkinson,J. Anti-microb. Chemother. 30, 839 (1992).

    CAS  Google Scholar 

  26. A. Meister,Biochem. Pharmacol. 44 (10), 1905 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. D. Arquette and L. D. Caren,Life Sc. 50, 753 (1992).

    Article  CAS  Google Scholar 

  28. M. de Sousa, inIron in Immunity, Cancer and Inflammation, M. de Sousa and J. H. Brock, eds., John Wiley, Chichester, UK, pp. 247–258 (1989).

    Google Scholar 

  29. B. S. Van Asbeck, J. J. M. Marx, A. Struyvenberg, and J. Verhoef,J. Infect. 85, 232 (1984).

    Article  Google Scholar 

  30. P. Elsbach and J. Weiss,Inflammation: Basic Principles and Clinical Correlates, 2nd ed., J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds., Raven, New York, pp. 603–636 (1992).

    Google Scholar 

  31. G. R. Tompkins, M. M. O’Neill, T. G. Cafarella, and G. R. Germaine,Infect. Immun. 59 (2), 655 (1991).

    PubMed  CAS  Google Scholar 

  32. K. Abok, T. Hirth, J. L. E. Ericsson, and U. Brunk,Virchows Arch. (Cell. Pathol.) 43, 85 (1983).

    CAS  Google Scholar 

  33. R. T. Ellison and T. J. Gieh,J. Clin. Invest. 88, 1080 (1991).

    Article  PubMed  CAS  Google Scholar 

  34. K. Yamauchi, M. Tomita, T. J. Giehl, and R. T. Ellison,Infect. Immun. 61 (2), 719 (1993).

    PubMed  CAS  Google Scholar 

  35. M. Sarih, V. Souvannavong, and A. Adam,Biochem. Biophys. Res. Commun. 191 (2), 503 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, Y.P., Isoard, P. Effect of iron and phagocytosis on murine macrophage activation in vitro. Biol Trace Elem Res 47, 37–50 (1995). https://doi.org/10.1007/BF02790099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790099

Index Entries

Navigation