Skip to main content
Log in

A comparison of four assays detecting oxidizing species

Correlated reactivity of Fe(III)-quin2, but not Fe(III)-EDTA, with hydrogen peroxide

  • Part I Free Radical Stress: Interactions with Trace Elements or Vitamins
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Quin2, a fluorescent calcium probe, has a low affinity for calcium in comparison to its affinities for transition metal ions. Chelation of ferric ion with quin2 strongly enhanced the formation of oxidizing species in the presence of bolus H2O2 as detected with four assays, electron spin resonance with the spin-trap DMPO, the deoxyribose assay, the DMSO assay, and plasmid DNA strand breakage. In comparison, Fe(III)-EDTA reacted with bolus H2O2 only as detected with electron spin resonance and the deoxyribose assay, but not as detected with the two latter assays. The addition of reductants, like ascorbate or superoxide generated by hypoxanthine/xanthine oxidase, to Fe(III)-EDTA in the presence of H2O2 produced plasmid DNA strand breakage and strong reactivity in both the DMSO and the deoxyribose assays. Our findings suggest that the main oxidizing species produced in Fenton-type reactions is hydroxyl radical. However, the reaction between Fe(III)-EDTA and bolus H2O2 appears to be exceptional and dominated by a nonhydroxyl radical species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Y. Tsien, T. Pozzan, and T. J. Rink,J. Cell Biol. 94, 325 (1982).

    Article  PubMed  CAS  Google Scholar 

  2. B. E. Sandström, M. Grandström, and S. L. Marklund,Free Rad. Biol. Med. 16, 177 (1994).

    Article  PubMed  Google Scholar 

  3. T. R. Hesketh, G. A. Smith, J. P. Moore, M. V. Taylor, and J. C. Metcalfe,J. Biol. Chem. 258, 4876 (1983).

    PubMed  CAS  Google Scholar 

  4. O. Cantoni, P. Sestili, F. Cattabeni, G. Bellomo, S. Pou, M. Cohen, and P. Cerutti,Eur. J. Biochem. 182, 209 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. B. Halliwell, and J. M. C. Gutteridge,FEBS Lett. 128, 347 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. C. F. Babbs, and M. J. Gale,Anal. Biochem. 163, 67 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. M. C. R. Symons, inElectron Spin Resonance, vol. 12B, M. C. R. Symons ed., Royal Soc. Chem., London, UK, pp. 191–238 (1991).

    Chapter  Google Scholar 

  8. O. I. Aruoma, B. Halliwell, and M. Dizdaroglu,J. Biol. Chem. 264, 13024 (1989).

    PubMed  CAS  Google Scholar 

  9. O. I. Aruoma, B. Halliwell, E. Gajewski, and M. Dizdaroglu,J. Biol. Chem. 264, 20509 (1989).

    PubMed  CAS  Google Scholar 

  10. M. Dizdaroglu, G. Rao, B. Halliwell, and E. Gajewski,Arch. Biochem. Biophys. 285, 317 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. J. D. Rush, and W. H. Koppenol,J. Biol. Chem. 261, 6730 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandström, B.E., Granström, M., Vezin, H. et al. A comparison of four assays detecting oxidizing species. Biol Trace Elem Res 47, 29–36 (1995). https://doi.org/10.1007/BF02790098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790098

Index Entries

Navigation