Skip to main content
Log in

Immunological approach to investigating membrane cell damages induced by lipoperoxidative stress

Application to far UV-irradiated erythrocytes

  • Part I Free Radical Stress: Interactions with Trace Elements or Vitamins
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Oxygen-reactive species are being described as agents responsible for cell degeneration mechanisms resulting from membrane, enzyme, and nuclear alterations. Lipid peroxidation on its own is considered to be one of the consequences of the free radicals attack, and among the different reactive aldehydes that can be formed from the decomposition of lipid peroxides, the most extensively assayed have been malondialdehyde (MDA). However, the different techniques currently used for MDA assay (HPLC, GLC) are barely sensitive enough to follow its production at the cellular level.

In order to develop an immunofluorescent technique able to detect cellular damages provoked by lipoperoxidation, polyclonal antibodies against lysozyme modified by MDA treatment have been raised in rabbits. We show that this immunserum recognizes specifically all the MDA-treated proteins tested, but not the intact proteins or the proteins treated by other aldehydes.

Moreover, we demonstrate using an ELISA technique that the amount of immunoreactive proteins in MDA-treated membrane erythrocytes is proportional to the concentration of MDA applied, suggesting that this assay may represent a quantitative method of determination of lipoperoxidative alterations. In addition, when coupled to an indirect fluorophore antibody (FITC), the immunserum allows a precise location of these modified proteins within the membranes of erythrocytes in which lipid peroxidation was initiated by far UV irradiation.

In summary, the interest of this work is to provide an immunological probe that can precociously detect membrane damages induced by MDA, regardless of the cell type and pro-oxidant (physiological or pathological) conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

GLC:

gas-liquid chromatography

HPLC:

high-performance liquid chromatography

LDL:

low-density lipoproteins

MDA:

malondialdehyde

TBA:

thiobarbituric acid

TLC:

thin-layer chromatography

References

  1. H. Hara, H. Kato, T. Araki, H. Onodera, and K. Kogure,Neuroscience 42, 159–169 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. J. K. Salonen, S. Ylä-Herttuala, R. Yamamoto, S. Buttler, H. Korpela, R. Salonen, K. Nyyssönen, W. Palinski, and J. L. Witztum,Lancet 339, 883–887 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. C. Ceconi, A. Cargnoni, E. Pasini, E. Condorelli, S. Curello, and R. Ferrari,Am. J. Physiol. 260, H 1057–1061 (1991).

    Google Scholar 

  4. T. Otamiri and R. Sjödahl,Cancer 64, 422–425 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. P. Hochstein and A. S. Atallah,Mutat. Res. 202, 363–375 (1988).

    PubMed  CAS  Google Scholar 

  6. H. Esterbauer, inFree Radicals, Lipid Peroxidation and Cancer C. D. E. Mc Brien and T. F. Slater, eds., Academic Press, New York, pp. 101–128 (1982).

    Google Scholar 

  7. J. Lang, C. Celotto, and H. Esterbauer,Anal. Biochem. 150, 369–378 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. H. Esterbauer and K. H. Cheeseman,Methods Enzymol. 186, 407–421 (1990).

    PubMed  CAS  Google Scholar 

  9. E. Dumont, E. Petit, T. Tarrade, and A. Nouvelot,Free Radic. Biol. Med. 13, 197–203 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. S. K. Jain,J. Biol. Chem. 259, 3391–3394 (1984).

    PubMed  CAS  Google Scholar 

  11. C. E. Vaca, J. Wilhelm, and M. Harms-Ringdahl,Mutat. Res. 195, 137–149 (1988).

    PubMed  CAS  Google Scholar 

  12. Goda and Marnett,Chem. Res. Toxicol. 4, 520–524 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. J. M. C. Gutteridge,Int. J. Biochem. 14, 649–653 (1982).

    Article  PubMed  CAS  Google Scholar 

  14. J. M. C. Gutteridge,Free Radic. Res. Comm. 1, 173–184 (1986).

    Article  CAS  Google Scholar 

  15. M. Beljean-Leymarie and E. Bruna,Anal. Biochem. 173, 176–184 (1988).

    Google Scholar 

  16. T. Hirayama, N. Yamada, M. Nahara, and S. Fukui,J. Sci. Food Agric. 35, 289–296 (1984).

    Google Scholar 

  17. A. S. Csallany, M. D. Guan, J. D. Manwarring, P. B. Addis,Anal. Biochem. 142, 277–283 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. H. Esterbauer, J. Lang, S. Zadravec, and T. F. Slater,Methods Enzymol. 105, 319–328 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. H. Esterbauer, R. J. Schaur, and H. Zollner,Free Radic. Biol. Med. 11, 81–128 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. J. F. Kergonou, I. Pennacino, C. Lafite, and R. Ducousso,Biochem. Intern. 16, 845–852 (1988).

    CAS  Google Scholar 

  21. Y. Chancerelle, C. Alban, R. Viret, F. Tosetti, and J. F. Kergonou,Biochem. Intern. 24, 157–163 (1991).

    CAS  Google Scholar 

  22. E. Petit, M. Ayrault-Jarrier, D. Pastier, H. Robin, and J. Polonovski,Biochim. Biophys. Acta 919, 287–296 (1987).

    PubMed  CAS  Google Scholar 

  23. S. Salmon, C. Maziere, L. Theron, I. Beucler, M. Ayrault-Jarrier, S. Goldstein, and J. Polonovski,Biochim. Biophys. Acta 920, 215–220 (1987).

    PubMed  CAS  Google Scholar 

  24. J. T. Dodge, C. Mitchell, and D. J. Hanahan,Arch. Biochem. Biophys. 100, 119–130 (1962).

    Article  Google Scholar 

  25. A. Herrman and P. F. Devaux,Biochim. Biophys. Acta 1027, 41–45 (1990).

    Article  Google Scholar 

  26. M. Uchiyama and M. Mihara,Anal. Biochem. 86, 271–278 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. M. Beppu, K. Murakami, and K. Kikugawa,Chem. Pharm. Bull. 34, 781–788 (1986).

    PubMed  CAS  Google Scholar 

  28. Y. Israel, E. Hurwitz, O. Niemelä, and R. Arnon,Proc. Natl. Acad. Sci. USA 83, 7923–7927 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. H. Mowri, S. Ohkuma, and T. Takano,Biochim. Biophys. Acta 963, 208–214 (1988).

    PubMed  CAS  Google Scholar 

  30. M. Chojkier, K. Houglum, J. Solis-Herruzo, and D. A. Brenner,J. Biol. Chem. 264, 16957–16962 (1989).

    PubMed  CAS  Google Scholar 

  31. C. Pfaffeott, H. J. Meiselman, and P. Hochstein,Blood 59, 12–15 (1982).

    Google Scholar 

  32. Y. Yamamoto, E. Niki, J. Eguchi, Y. Kamya, and H. Shimasaki,Biochim. Biophys. Acta 819, 29–36 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. J. F. Koster and R. G. Slee,Biochim. Biophys. Acta 752, 233–239 (1983).

    PubMed  CAS  Google Scholar 

  34. I. E. Kochevar,Photochem. Photobiol. 52, 795–800 (1990).

    PubMed  CAS  Google Scholar 

  35. M. M. B. Kay,Biomed. Biochim. Acta 49, 212–217 (1990).

    Google Scholar 

  36. C. Seppi, A. C. Castellana, G. Minetti, G. Piccinini and A. Brovelli,Mech. Ageing and Dev. 57, 247–258 (1991).

    Article  CAS  Google Scholar 

  37. M. Beppu, A. Mizukami, M. Nagoya, and K. Kikugawa,J. Biol. Chem. 265, 3226–3233 (1990).

    PubMed  CAS  Google Scholar 

  38. R. P. Hebbel, and W. J. Miller,Am. J. Hemato. 29, 222–225 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, E., Divoux, D., Chancerelle, Y. et al. Immunological approach to investigating membrane cell damages induced by lipoperoxidative stress. Biol Trace Elem Res 47, 17–27 (1995). https://doi.org/10.1007/BF02790097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790097

Keywords

Navigation