Skip to main content
Log in

Comparison of migration modeling in micellar electrokinetic chromatography by linear regression and by use of an artificial neural network

  • Originals
  • Electrophoresis
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The concentrations of modifier (methanol or acetonitrile) and surfactant (sodium dodecyl sulfate, SDS) in the running buffer are important factors influencing the mobility of analytes in micellar electrokinetic chromatography (MEKC). Response surfaces of the effective mobility can be used to predict mobility as a function of the buffer composition.

This paper describes the modeling, by multiple linear regression and by use of a back-propagation neural network, of the response surfaces of the effective mobility of cocaine and related compounds, of fluvoxamine and its possible impurities, and of a mixture of alkylphenones. Special attention has been paid to selection of the proper order of the regression models, to selection of the proper network configuration, and to the predictive quality of the models. The regression models were selected by backward elimination of non-significant terms starting with a full second-order polynomial model. The proper network configuration was selected by finding the optimum number of hidden neurons by lateral inhibition and subsequent determination of the optimum number of training cycles by a cross-validation method.

On the basis of the multiple determination coefficient,R 2, the descriptive performances of the neural network and the regression models are almost the same. However, the predictive performance of the regression models and the neural network models are approximately equal for migration in MEKC. The relative prediction error of the effective mobility is ca 2.5% for cocaine and related compounds, 1 – 7% for the alkylphenones, and 1.5 – 2.2% for fluvoxamine and its possible impurities; this is approximately the same order of magnitude, or slightly higher, than the relative standard deviation of the replicate measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya, A.; Ando, T.Anal. Chem. 1984,56, 111–113.

    Article  CAS  Google Scholar 

  2. Terabe, S.; Otsuka, K.; Ando, T.Anal. Chem. 1985,57, 834–841.

    Article  CAS  Google Scholar 

  3. Vindevogel, J.; Sandra, P.Introduction to Micellar Electrokinetic Chromatography, Hüthig, Heidelberg,1992.

    Google Scholar 

  4. Corstjens, H.; Billiet, H.A.H.; Frank, J.; Luyben, K.Ch.A.M.J. Chromatogr. 1995,715, 1–11.

    Article  CAS  Google Scholar 

  5. Schoenmakers, P.J.Optimization of Chromatographic Selectivity, Elsevier, Amsterdam,1986.

    Google Scholar 

  6. Jimidar, M.; Bourguignon, B.; Massart, D.L.Anal. Chim. Acta 1995,310, 27–42.

    Article  CAS  Google Scholar 

  7. Khaledi, M.G.; Smith, S.C.; Strasters, J.K.Anal. Chem. 1991,63, 1820–1830.

    Article  CAS  Google Scholar 

  8. Quang, C.; Strasters, J.K.; Khaledi, M.G.Anal. Chem. 1994,66, 1646–1653.

    Article  CAS  Google Scholar 

  9. Van Zomeren, P.V.; Hilhorst, M.J.; Coenegracht, P.M.J.; de Jong, G.J.J. Chromatogr. 2000,867, 247–259.

    Article  Google Scholar 

  10. Havel, J.; Peña, E.M.; Rojas-Hernández, A.; Doucet, J.P.; Panaye, A.J. Chromatogr. 1998,793, 317–329.

    Article  CAS  Google Scholar 

  11. Quang, C.H.; Khaledi, M.G.J. Chromatogr. 1994,659, 459–466.

    Article  CAS  Google Scholar 

  12. Yang, Q.; Smeyers-Verbeke, J.; Wu, W.; Khots, M.S.; Massart, D.L.J. Chromatogr. 1994,688, 339–349.

    Article  CAS  Google Scholar 

  13. Jidmar, M.; Hamoir, T.; Degezelle, W.; Massart, D.L.; Soyens, S.; Van der Winkel, P.Anal. Chim. Acta 1993,284, 217–225.

    Article  Google Scholar 

  14. Farková, M.; Peña-Méndez, E.M.; Havel, J.J. Chromatogr. 1999,848, 365–374.

    Article  Google Scholar 

  15. Metting, H.J.; Coenegracht, P.M.J.J. Chromatogr. 1996,728, 47–53.

    Article  CAS  Google Scholar 

  16. Yasui, S.Proc. 2nd Int. Conf. Fuzzy Logic and Neural Networks, Izuka, July 17–22,1992.

  17. Hilhorst, M.J.; van Hout, M.W.J.; Somsen, G.W.; Franke, J.P.; de Jong, G.J.J. Cap. Elec. 1998,5, 159–164.

    CAS  Google Scholar 

  18. Hendriks, M.M.W.B.Nonlinear Retention Modeling in Liquid Chromatography, PhD Thesis, University of Groningen, The Netherlands,1996 (www.ub.rug.nl/eldoc/dis/science/m.m.w.b.hendriks/).

    Google Scholar 

  19. Sacchero, G.; Bruzzoniti, M.C.; Sarzanini, C.; Mentasti, E.; Metting, H.J.; Coenegracht, P.M.J.J. Chromatogr. 1998,799, 35–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metting, H.J., van Zomeren, P.V., van der Ley, C.P. et al. Comparison of migration modeling in micellar electrokinetic chromatography by linear regression and by use of an artificial neural network. Chromatographia 52, 607–613 (2000). https://doi.org/10.1007/BF02789760

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789760

Key Words

Navigation