Skip to main content
Log in

Rational immunotherapy with ribonuclease chimeras

An approach toward humanizing immunotoxins

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

Members of the pancreatic ribonuclease (RNase) family have diverse activities toward RNA that could cause them to function during host defense and physiological cell death pathways. This activity could be harnessed by coupling RNases to cell binding ligands for the purpose of engineering them into cell-type specific cytotoxins. Therefore, the cytotoxic potential of RNase was explored by linking bovine pancreatic ribonuclease A via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10−7 M, whereas>10−4 M of native RNase was required to inhibit protein synthesis. Cytotoxicity required both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Importantly, the RNase conjugates were found to have potent antitumor effects in vivo. Chimeric RNase fusion proteins were also developed. F(ab′)2-like antibody-enzyme fusions were prepared by linking the gene for human RNase to a chimeric antitransferrin receptor heavy chain gene. The antibody enzyme fusion gene was introduced into a transfectoma that secreted the chimeric light chain of the same antibody, and cell lines were cloned that synthesized and secreted the antibody-enzyme fusion protein of the expected size at a concentration of 1–5 ng/mL. Culture supernatants from clones secreting the fusion protein caused inhibition of growth and protein synthesis toward K562 cells that express the human transferrin receptor but not toward a nonhuman derived cell line. Since human ribonucleases coupled to antibodies also exhibited receptor mediated toxicities, a new approach to selective cell killing is provided. This may allow the development of new therapeutics for cancer treatment that exhibit less systemic toxicity and, importantly, less immunogenicity than the currently employed ligand-toxin conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilliland, D. G., Steplewski, Z., Collier, R. J., Mitchell, K, Chang, T., and Koprowski, H. (1980) Antibody directed cytotoxic agents: use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells.Proc. Natl. Acad. Sci. USA 77, 4539–4543.

    Article  PubMed  CAS  Google Scholar 

  2. Krolick, K. A., Villemez, C., Isakson, P., Urh, J., and Vitetta, E. (1980) Selective killing of neoplastic B cells by antibodies coupled to the A chain of ricin.Proc. Natl. Acad. Sci. USA 77, 5419–5423.

    Article  PubMed  CAS  Google Scholar 

  3. Youle, R. J. and Neville, D. M. (1980) Anti-Thy 1.2 monoclonal antibody linked to ricin is a potent cell-type-specific toxin.Proc. Natl. Acad. Sci. USA 77, 5483–5486.

    Article  PubMed  CAS  Google Scholar 

  4. Sawler, D. L., Bartholomew, R. M., Smith, L. M., and Dillman, R. (1985) Human immune response to multiple injections of murine monoclonal IgG.J. Immunol. 135, 1530–1535.

    Google Scholar 

  5. Schroff, R. W., Foon, K. A., Beatty, S. M., Oldham, R., and Morgan, A. (1985) Human anti-murine immunoglobulin response in patients receiving monoclonal antibody therapy.Cancer Res. 45, 879–885.

    PubMed  CAS  Google Scholar 

  6. Rybak, S. M. and Youle, R. J. (1991) Clinical use of immunotoxins: monoclonal antibodies conjugated to protein toxins,Immunol. Allergy Clin. North Am. 11:2, 359–380.

    Google Scholar 

  7. Harkonen, S., Stoudemire, J., Mischak R., Spetler, L., Lopez, H., and Scannon, P. (1987) Toxicity and immunogenicity of monoclonal antimelanoma antibody-ricin A chain immunotoxins in rats.Cancer Res. 47, 1377–1385.

    PubMed  CAS  Google Scholar 

  8. Hertler, A. (1988) Human immune response to immunotoxins, inImmunotoxins (Frankel, A. E., ed.), Kluwer Academic, Boston/Dordrecht/ Lancaster, pp. 475–480.

    Google Scholar 

  9. Boulianne, G. L., Houzumi, N., and Schulman, M. J. (1985) Production of functional chimeric mouse/human antibodies.Nature (Lond.) 643–646.

  10. Morrison, S. L., Johnson, M. J., Herzenberg, L. A., and Oi, V. T. (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant regions.Proc. Natl. Acad. Sci. USA 81, 6851–6855.

    Article  PubMed  CAS  Google Scholar 

  11. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter, G. (1986). Replacing the complementary-determining regions in a human antibody with those from a mouse.Nature (London) 321, 522–525.

    Article  CAS  Google Scholar 

  12. Riechmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human antibodies for therapy.Nature (Lond.) 332, 323–327.

    Article  CAS  Google Scholar 

  13. Rybak, S. M., Saxena, S. K., Ackerman, E. J., and Youle, R. J. (1991) Cytotoxic potential of RNase and RNase hybrid proteins.J. Biol. Chem. 266, 21,202–21,207.

    CAS  Google Scholar 

  14. Newton, D. L., Ilercil, O., Laske, D. W., Oldfield, E., Ryback, S. M., and Youle, R. J. (1992) Cytotoxic ribonuclease chimeras: targeted tumoricidal activity in vitro and in vivo.J. Biol. Chem., submitted.

  15. Rybak, S. M., Hoogenboom, H. R., Meade, H., Ravs, J. C., Schwartz, D., and Youle, R. J. (1992) Humanization of immunotoxins,Proc. Natl. Acad. Sci. USA 89, 3165–3169.

    Article  PubMed  CAS  Google Scholar 

  16. McClure, B. A., Haring, V., Ebert, P. R., Anderson, M. A., Simpson, R. J., Sakiyama, F., and Clarke, A. E. (1989) Style self-incompatibility products of Nicotiana alata are ribonucleases.Nature (Lond.) 342, 955–957.

    Article  CAS  Google Scholar 

  17. Darzynkiewicz, Z., Carter, S. P., Mikulski, S. M., Ardelt, W., and Shogen, K. (1988) Cytostatic and cytotoxic effects of Pannon (P-30 protein) a novel anti-cancer agent.Cell Tissue Kinetics 21, 169–182.

    CAS  Google Scholar 

  18. Mikulski, S. M., Viera, A., Ardelt, W., Menduke, H., and Shogen, K. (1990) Tamoxifen and trifluoroperazine (stelazine) potentiate cytostatic/cytotoxic effects of P-30 protein, a novel protein possessing anti-tumor activity.Cell Tissue Kinetics 23, 237–246.

    CAS  Google Scholar 

  19. Ardelt, A., Mikulski, S. M., and Shogen, K. (1991) Amino acid sequence of an anti-tumor protein fromRana pipiens oocytes and early embryos.J. Biol. Chem. 256, 245–251.

    Google Scholar 

  20. Mikulski, S. M., Ardelt, W., Shogen, K., Vernstein, E. H., and Menduke, H. (1990) Striking increase of survival of mice bearing M109 Madison Carcinoma treated with a novel protein from amphibian embryos.J. Natl. Cancer Inst. 82, 151–153.

    Article  PubMed  CAS  Google Scholar 

  21. Beintema, J., Schuller, C., Irie, M., and Carsana, A. (1988) Molecular evolution of the ribonuclease superfamily.Prog. Biophys. Mol. Biol. 51, 165–192.

    Article  PubMed  CAS  Google Scholar 

  22. Roth, J. S. (1963) Ribonuclease activity and cancer: a review.Cancer Res. 23, 657–666.

    PubMed  CAS  Google Scholar 

  23. Matousek, J. (1973) The effect of bovine seminal ribonuclease (AS RNase) on cells of Crocker tumour in mice.Experientia 29, 858,859.

    Article  PubMed  CAS  Google Scholar 

  24. Vescia, S., Tramontano, D., Augusti-Tocco, G., and D'Allessio, G. (1980) In vitro studies on selective inhibition of tumor cell growth by seminal ribonuclease.Cancer Res. 40, 3740–3744.

    PubMed  CAS  Google Scholar 

  25. Slifman, N. R., Loegering, D. A., McKean, D. J., and Gleich, G. J. (1986). Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein.J. Immunol. 137, 2913–2917.

    PubMed  CAS  Google Scholar 

  26. Spry, C. (1988)Eosinophils: A Comprehensive Review and Guide to the Scientific and Medical Literature. Oxford University Press, Oxford, New York.

    Google Scholar 

  27. Tepper, R. I., Pattengale, P. K., and Leder, P. (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo.Cell 57, 503–512.

    Article  PubMed  CAS  Google Scholar 

  28. Ghiabi, M., Gallagher, G. T., and Wong, D. T. (1992) Eosinophils, tissue eosinophilia and eosinophil-derived transforming growth factor A in hamster oral carcinogenesis.Cancer Res. 52, 389–893.

    PubMed  CAS  Google Scholar 

  29. Young, J., Peterson, C., Venge, P., and Cohn, Z. A. (1986) Mechanism of membrane damage mediated by human eosinophil cationic protein.Nature (Lond.) 321 613–616.

    Article  CAS  Google Scholar 

  30. Rosenberg, H. F., Tenen, D. G., and Ackerman, S. J. (1989) Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family.Proc. Natl. Acad. Sci. USA 86, 4460–4464.

    Article  PubMed  CAS  Google Scholar 

  31. Reddi, E. K. (1975) Nature and possible significance of human serum ribonuclease.Biochem. Biophys. Res. Commun. 67, 110–118.

    Article  PubMed  CAS  Google Scholar 

  32. Blank, A., Dekker, C., Shieven, G. Sugiyama, R., and Thelen, M. (1981)Human Body Fluid Ribonucleases: Detection, Interrelationships and Significance. IRL, London, pp. 203–209.

    Google Scholar 

  33. Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, J. L. Riordan, J. F., and Vallee, B. L. (1985) Isolation and characterization of angiogenin an angiogenic protein from human carcinoma cells.Biochemistry 24, 5480–5485.

    Article  PubMed  CAS  Google Scholar 

  34. Strydom, D. J., Fett, J. W., Lobb, R. R., Alderman, E. M., Bethune, J. L. Riordan, J. F., and Vallee, B. L. (1985) Amino acid sequence of human tumor derived angiogenin.Biochemistry 24, 5486–5494.

    Article  PubMed  CAS  Google Scholar 

  35. Kurachi, K., Davie, E. W., Strydom, D. J., Riordan, J. F., and Vallee, B. L. (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor.Biochemistry 24, 5494–5499.

    Article  PubMed  CAS  Google Scholar 

  36. Shapiro, R., Riordan, J. F., and Vallee, B. L. (1986) Characteristic ribonucleolytic activity of human angiogenin.Biochemistry 25, 3527–3531.

    Article  PubMed  CAS  Google Scholar 

  37. St. Clair, D. K., Rybak, S. M., Riordan, J. F., and Vallee, B. L. (1987) Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes.Proc. Natl. Acad. Sci. USA 84, 8330–8334.

    Article  PubMed  CAS  Google Scholar 

  38. O'Keefe, D. O. and Draper, R. K. (1986) Characterization of a, transferrin-diphtheria toxin conjugate.J. Biol. Chem. 260, 932–937.

    Google Scholar 

  39. Raso, V. and Basala, M. (1984) A highly cytotoxic human transferrinricin A chain conjugate used to select receptor-modified cells.J. Biol. Chem. 259, 1143–1149.

    PubMed  CAS  Google Scholar 

  40. Wagner, E., Zenke, M., Cotten, M., et al. (1990) Transferrin-polycation conjugates as carriers for DNA uptake into cells.Proc. Natl. Acad. Sci. USA 87, 3410–3414.

    Article  PubMed  CAS  Google Scholar 

  41. Prior, T. I., Fitzgerald, D. J., and Pastan, I. (1991) Barnase Toxin: a new chimeric toxin composed of pseudomonas exotoxin A and Barnase.Cell 64, 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  42. Saxena, S. K., Rybak, S. M., Winkler G., Meade, H. M., Mc Gray, P., Youle, R. J., and Ackerman, E. J. (1991) Comparison of RNases and toxins on injection intoXenopus oocytes.J. Biol. Chem. 266, 21,208–21,214.

    CAS  Google Scholar 

  43. Hudson, T. H. and Neville, D. M. (1988) Enhancement of immunotoxin action: Manipulation of the cellular routing of proteins, inImmunotoxins (Frankel, A. E., ed.), Kluwar Academic, Boston/Dordrecht/Lancaster, pp. 371–389.

    Google Scholar 

  44. Hoogenboom, H. R., Raus, J. M., and Volckaert, G. (1991) Targeting of tumor necrosis factor to tumor cells: secretion by myeloma cells of a genetically engineered antibody-tumor necrosis factor hybrid molecule.Biochem. Biophys. Acta 1096, 345–354.

    PubMed  CAS  Google Scholar 

  45. Hoogenboom, H. R., Volckaert, G., and Raus, J. M. (1991) Construction and expression of antibody-tumor necrosis factor fusion proteins.Mol. Immunol. 28, 1027–1037.

    Article  PubMed  CAS  Google Scholar 

  46. Hoogenboom, H. R., Raus, J. M., and Volckaert, G. (1990) Cloning and expression of a chimeric antibody directed against the human transferrin receptor.J. Immunol. 144, 3211–3217.

    PubMed  CAS  Google Scholar 

  47. Casadei, J., Powell, M. J., and Kenten, J. H. (1990) Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector.Proc. Natl. Acad. Sci. USA 87, 2047–2051.

    Article  PubMed  CAS  Google Scholar 

  48. Williams, G. T. and Neuberger, M. S. (1986) Production of antibody taggted enzymes by myeloma cells: application to DNA polymerase I Klenow fragment.Gene 43, 319–324.

    Article  PubMed  CAS  Google Scholar 

  49. Pastan, I., Willingham, M., and FitzGerald, D. (1986) Immunotoxins.Cell 47, 641–648.

    Article  PubMed  CAS  Google Scholar 

  50. Vitetta, E. S., Fulton, R. J., and May, R. D. (1987) Redesigning nature's poisons to create anti-tumor reagents.Science 238, 1098–1104.

    Article  PubMed  CAS  Google Scholar 

  51. Newton, D. L., Walbridge, S., Mikulski, S. M., Ardelt, K. S., Ackerman, S. J., Rybak, S. M., and Youle, R. J. (1983) Toxicity of an antitumor ribonuclease to Purkinje neurons.J. Neuroscience, in press.

  52. Wu, Y. N., Mikulski, S. M., Ardelt, W., Rybak, S. R., and Youle, R. J. (1993) A cytotoxic ribonuclease.J. Biol. Chem. 268, 10,686–10,693.

    CAS  Google Scholar 

  53. Rybak, S. M., Newton, D. L., Mikulski, S. M., and Viera, A., and Youle, R. J. (1993) Cytotoxic onconase and ribonuclease A chimeras.Drug Targeting and Delivery, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybak, S.M., Hoogenboom, H.R., Newton, D.L. et al. Rational immunotherapy with ribonuclease chimeras. Cell Biophysics 21, 121–138 (1992). https://doi.org/10.1007/BF02789483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789483

Index Entries

Navigation