Skip to main content

Advertisement

Log in

Distribution of aluminum in different brain regions and body organs of rat

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present study, an attempt has been made to investigate the distribution of aluminum in different regions of brain and body organs of male albino rats, following subacute and acute aluminum exposure. Aluminum was observed to accumulate in all regions of the brain with maximum accumulation in the hippocampus. Subcellular distribution of aluminum indicated that there was maximum localization in the nucleus followed by cytosolic, microsomal, and mitochondrial deposition. Elution profile of cytosolic proteins on G-75 Sephadex column revealed a substantial amount of aluminum bound to high-mol-wt protein fraction. Aluminum was also seen to compartmentalize in almost all the tissues of the body to varying extents, and the highest accumulation was in the spleen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Crapper-Mclachlan, S. S. Krishnan, and S. Quittkat, Aluminium, neurofibrillary degeneration and Alzheimer's disease,Brain 99, 67–80 (1976).

    Article  Google Scholar 

  2. R. B. Winney, J. F. Cowie, and J. S. Robson, Role of plasma aluminium in the detection and prevention of aluminium toxicity,Kidney Int. 29, S91-S95 (1986).

    Google Scholar 

  3. A. B. Hodsman, D. J. Sherrard, A. C. Alfrey, S. Ott, A. S. Brickman, N. L. Miller, N. A. Maloney, and J. W. Coburn, Bone aluminium and histomorphometric features of renal osteodystrophy,J. Clin. Endocrinol Metab. 54, 539–546 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. M. Hava and A. Hurwitz, The relaxing effect of aluminium and lanthanum on rat and human gastric smooth muscle in vitro,Eur. J. Pharmac. 22, 156–161 (1973).

    Article  CAS  Google Scholar 

  5. G. L. Klein, M. B. Heyman, T. C. Lee, N. L. Miller, G. Marathe, W. K. Goorly, and A. C. Alfrey, Aluminium associated hepatobiliary dysfunction in rats: Relationship to dosage and duration of exposure,Ped. Res. 23, 275–280 (1988).

    Article  CAS  Google Scholar 

  6. H. L. Elliott, A. I. MacDougall, G. S. Fell, and P. H. E. Gardiner, Plasmapheresis, aluminium and dialysis,Lancet ii, 1255 (1978).

    Article  Google Scholar 

  7. C. G. Shaver and A. R. Riddel, Lung changes associated with the manufacture of alumina abrasives,J. Ind. Hyg. Toxicol 29, 147–157 (1947).

    Google Scholar 

  8. W. G. Goodman and O'Connor. Aluminium alters calcium influx and efflux from bone in vitro,Kidney Int. 39, 602–607 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. G. C. Dunkley, Aluminium reduction in bladder cancer,Can. Med. Assoc. J. 126, 1026 (1982).

    PubMed  CAS  Google Scholar 

  10. K. Sood, D. Nag, and S. V. Chandra, Role of aluminium in sporadic motor neuron disease,Ind. J. Med. Res. 92, 9–12 (1990).

    CAS  Google Scholar 

  11. R. M. Garruto and Y. Yase, Neurodegenerative disorders of the Western Pacific: the search for mechanisms of pathogenesis,Trends Neurosci. 9, 368 (1986).

    Article  Google Scholar 

  12. J. Glowinski and L. L. Iversen, Regional studies of catecholamines in the rat brain,J. Neurochem. 13, 655–669 (1966).

    Article  PubMed  CAS  Google Scholar 

  13. L. Chavant, R. Dargent, J. Rami, and C. Mohant, Characterization of subcellular fractions, mitochondria and microsomes in two filamentous fungi,Biol. Cell 37, 299–303 (1980).

    CAS  Google Scholar 

  14. H. N. Munro and A. Fleck, The determination of nucleic acids, inMethods of Biochemical Analysis, vol. col. 14 D. Glick, ed., New York Interscience, New York, p. 113.

  15. G. L. Sottocasa, B. Kuylenstierna, L. Ernster, and A. Bergstrand, An electron transport system associated with the outer membrane of liver mitochondria,J. Biol. Chem. 32, 415–438 (1967).

    CAS  Google Scholar 

  16. R. K. Crane and A. Sols, Animal tissue hexokinase, inMethods in Enzymology, Colowick, S. P. and Kaplan, N. O. eds., vol. 1, Academic, New York, pp. 277–282 (1965).

    Google Scholar 

  17. M. A. Swanson, Glucose-6-phosphatase from liver, inMethods in Enzymology vol. 2, Academic, New York, p. 541 (1955).

    Chapter  Google Scholar 

  18. H. Zumkley, H. P. Bertram, A. Lison, O. Knoll, and H. Losse, Al, Zn and Cu concentrations in plasma in chronic renal insufficiency,Clin. Nephrol. 12, 18–21 (1979).

    PubMed  CAS  Google Scholar 

  19. Y. Ebina, S. Okada, S. Hamazaki, and O. Midorikawa, Liver, Kidney and central nervous system toxicity of Al given intraperitoneally to rats: A multiple dose subchronic study using aluminium nitrilotriacetate,Toxicol. Appl. Pharma 75, 211–218 (1984).

    Article  CAS  Google Scholar 

  20. S. K. Tandon and P. C. Tewari, Effect of co-exposure to ethanol and cadmium in rats,Bull. Environ. Contam. Toxicol. 39, 633–640 (1988).

    Article  Google Scholar 

  21. P. O. Ganrot, Metabolism and possible health effects of aluminium,Environ. Health. Perspec. 65, 363–441 (1986).

    Article  CAS  Google Scholar 

  22. J. C. K. Lai and J. P. Blass, Inhibition of brain glycolysis by aluminium,J. Neurochem.,42, 438–446 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. G. B. Van der Voet and F. A. de Wolf, Intestinal absorption of aluminium in rats: Effects of intraluminal pH and aluminium concentration,J. Appl. Toxicol. 6, 37–41 (1987).

    Article  Google Scholar 

  24. R. N. Martins, C. G. Harper, G. B. Stokes, and C. L. Masters, Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer's disease may reflect oxidative stress.J. Neurochem. 46, 1042–1045 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. M. Cochran, J. Coates, and S. Neoh, The competitive equilibrium between aluminium and ferric ions for the binding sites of transferrin,FEBS Lett. 176, 129–132 (1987).

    Article  Google Scholar 

  26. M. Cochran, D. C. Eliott, Pard. Brennan, and V. Chawtur, Inhibition of protein kinase C activation by low concentrations of aluminium,Clin. Chim Acta 194, 167–172 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. A. J. Roskans and J. R. Connor, Aluminium access to the brain: A role for transferrin, and its receptor,Proc. Natl. Acad. Sci. 87, 9024–9027 (1990).

    Article  Google Scholar 

  28. N. Seigal and A. Haug, Aluminium interaction with calmodulin: Evidence for altered structure and function from optical and enzymatic studies.Biochim. Biophys Acta 744, 36–45 (1983).

    Google Scholar 

  29. G. Du Val, B. R. Grubb, and P. J. Bentley, Tissue distribution of subcutaneously administered aluminium chloride in weanling rabbits,Toxicol. Environ. Health 19, 97–104 (1986).

    Article  Google Scholar 

  30. M. Touam, F. Martinez, B. Locour, R. Bourdon, J. Zingraff, S. Cruilio, and T. Brueke, Aluminium induced reversible microcytic anemia in chronic renal failure clinical and experimental studies,Clin. Nephrol. 19, 295–298 (1983).

    PubMed  CAS  Google Scholar 

  31. J. L. Greger and C. F. Powers, Assessment of exposure to parenterall and oral aluminium with and without citrate using a desferrioxamine test in rats.Toxicology 76, 119–132 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. D. M. Holtzman and W. C. Mobley, Molecular studies in Alzheimer's disease,Trends Biochem. Sci. 16, 140–144 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. World Health Organization, Principles and methods for the assessment of neurotoxicity associated with exposure to chemicals, inEnviron. Health Criteria, Document 60, World Health Organization, Geneva.

  34. M. K. Johnson, Organophosphorus esters causing delayed neurotoxic effect: Mechanism of action and structure/activity studies,Arch. Toxicol. 34, 259–288 (1975).

    Article  PubMed  CAS  Google Scholar 

  35. K. Katoh, Age related differences in the inhibition of neuropathy target esterase and susceptibility to triphenyl phosphite induced delayed neurotoxicity in chickens,Nippon. Eiseigaku Zasshi 47, 861–869 (1992).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julka, D., Vasishta, R.K. & Gill, K.D. Distribution of aluminum in different brain regions and body organs of rat. Biol Trace Elem Res 52, 181–192 (1996). https://doi.org/10.1007/BF02789460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789460

Index entries

Navigation