Skip to main content
Log in

Free zinc concentration in bovine milk measured by analytical affinity chromatography with immobilized metallothionein

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A new analytical affinity chromatography method was developed for measuring the free [Zn2+] concentration in bovine milk. The column was generated by immobilizing avidin and attaching biotinylated metallothionein (MT) on controlled-pore glass beads. Zinc bound to the MT column at physiological free [Zn2+] concentration and was dissociated again in an elution buffer of pH 2. The distributions of extrinsically added65Zn and native zinc in different fractions of milk were virtually identical, validating the use of extrinsic labeling in studies of the free [Zn2+] concentration in milk. Extrinsically labeled whey fractions were mixed with standard solutions whose free [Zn2+] concentrations were calculated by computer model.65Zn retained by the column provided an indication of free [Zn2+] concentration in the mixture, and by interpolation, in the original milk. The free [Zn2+] concentration measured by the affinity chromatography method in the milk of a group of six cows was 90.4±29.7 pM. This value is similar to estimates of free [Zn2+] concentrations in other biological fluids by entirely different methods. Measurement of free [Zn2+] may be helpful in understanding the physiology and biochemistry of zinc metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Neville, R. P. Keller, C. E. Casey, and J. C. Allen,J. Dairy Sci. 77, 1964–1975 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. C. E. Casey, M. C. Neville, and K. M. Hambidge,Am. J. Clin. Nutr. 49, 773–785 (1989).

    PubMed  CAS  Google Scholar 

  3. S. J. Vaillancourt and J. C. Allen,Biol. Trace Element Res. 30, 185–196 (1991).

    Article  CAS  Google Scholar 

  4. N. W. Solomons,Am. J. Clin. Nutr. 32, 856–871 (1979).

    PubMed  CAS  Google Scholar 

  5. R. M. Forbes and J. W. Erdman, Jr.Ann. Rev. Nutr. 3, 213–231 (1983).

    Article  CAS  Google Scholar 

  6. N. W. Solomons, inModern Nutrition in Health and Disease, 7th ed., M. E. Shils and V. R. Young, eds., Lea and Febiger, Philadelphia, pp. 238–262 (1988).

    Google Scholar 

  7. J. Scholmerich, A. Freudemann, E. Kottgen, H. Wietholtz, B. Steiert, E. Lohle, D. Haussinger, and W. Gerok.Am. J. Clin. Nutr. 45, 1480–1486 (1987).

    PubMed  CAS  Google Scholar 

  8. B. Sandstrom, L. Davidson, A. Cederblad, and B. Lonnerdal,J. Nutr. 115, 411–414 (1985).

    PubMed  CAS  Google Scholar 

  9. R. Ellis, J. L. Kelsay, R. D. Raynolds, E. R. Morris, P. B. Moser, and C. W. Frazier,J. Am. Diet Assoc. 87, 1043–1047 (1987).

    PubMed  CAS  Google Scholar 

  10. T. C. A. McGann, W. Buchheim, R. D. Kearney, and T. Richardson,Biochim. Biophys. Acta 760, 415–420 (1983).

    PubMed  CAS  Google Scholar 

  11. B. Sandstrom, C. L. Keen, and B. Lonnerdal,Am. J. Clin. Nutr. 38, 420–428 (1983).

    PubMed  CAS  Google Scholar 

  12. K. M. Hambidge, P. A. Walravens, C. E. Casey, R. M. Brown, and C. Bender,J. Pediatr. 94, 607 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. R. A. DiSilvestro and R. J. Cousins.Ann. Rev. Nutr. 3, 261–288 (1983).

    Article  CAS  Google Scholar 

  14. D. S. Norton and F. W. Heaton,J. Inorg. Biochem. 13, 1–9 (1980).

    Article  PubMed  CAS  Google Scholar 

  15. B. C. Starcher, J. G. Glauber, and J. G. Madaras,J. Nutr. 110, 1391–1397 (1980).

    PubMed  CAS  Google Scholar 

  16. M. P. Menard, C. C. McCormick, and R. J. Cousins,J. Nutr. 11, 1353–1361 (1981).

    Google Scholar 

  17. R. J. Cousins, inClinical, Biochemical, and Nutritional Aspects of Trace Elements, A. S. Prasad, ed., Alan R. Liss, New York, pp. 117–128 (1982).

    Google Scholar 

  18. R. F. Bonewitz, E. C. Foulkes, E. J. O’Flaherty, and V. S. Hertzberg.Am. J. Physiol. 244, G314-G320 (1983).

    PubMed  CAS  Google Scholar 

  19. Association of Official Analytical Chemistry,Official Methods of Analysis. 13th ed., Assoc. Offic. Anal. Chem., Washington, DC (1980).

    Google Scholar 

  20. TK Solver Plus. Universal Technical Systems, Inc. Rockford, IL, p. 130 (1987).

  21. A. E. Martell and R. M. Smith, inCritical Stability Constants, vol. 3:Other Organic Ligands, Plenum, New York, p. 161 (1977).

    Google Scholar 

  22. A. E. Martell and R. M. Smith,Critical Stability Constants, vol. 5:First Supplement, Plenum, New York p. 329 (1982).

    Google Scholar 

  23. S. Kotrly and L. Sucha,Handbook of Chemical Equilibria in Analytical Chemistry, Ellis Horwood Limited, Chichester, West Sussex, England, 414 pp. (1985).

    Google Scholar 

  24. P. Zhang, New Methods for Measuring Free Zinc(II) Concentration in Biological Fluids and their Application in Bovine Blood and Milk. Ph.D. Dissertation, North Carolina State University, Raleigh 129 pp. (1994).

    Google Scholar 

  25. V. G. Janolino and H. E. Swaisgood,Biotechnol. Bioeng. 24, 1069–1080 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. G. DuVal, H. E. Swaisgood, and H. R. Horton,J. Appl. Biochem. 6, 240–250 (1984).

    PubMed  CAS  Google Scholar 

  27. N. M. Green and E. J. Toms,Biochem. J. 133, 687–698 (1973).

    PubMed  CAS  Google Scholar 

  28. Instructions of NHS-LC-Biotinylation Kit. 21430. Pierce Chemical Co. Rockford, IL (1990).

  29. O. N. Mathur and N. K. Roy,Indian J. Dairy Sci. 35, 374 (1982).

    CAS  Google Scholar 

  30. S. Parkash and R. Jenness,J. Dairy Sci. 50, 127–134 (1967).

    Article  PubMed  CAS  Google Scholar 

  31. P. Blakeborough, D. N. Salter, and W. I. Gurr,Biochem. J. 209, 505–512 (1983).

    PubMed  CAS  Google Scholar 

  32. H. Singh, A. Flynn, and P. F. Fox,J. Dairy Res. 56, 249–263 (1989).

    PubMed  Google Scholar 

  33. B. Lonnerdal, A. G. Stanislowski, L. S. Hurley,J. Inorg. Biochem. 12, 71–78 (1980).

    Article  PubMed  CAS  Google Scholar 

  34. M. T. Martin, K. F. Licklider, J. G. Brushmiller, F. A. Jacobs,J. Inorg. Biochem. 15, 55–65 (1981).

    Article  PubMed  CAS  Google Scholar 

  35. G. R. Magneson, J. M. Puvathingal, and W. J. Ray, Jr.J. Biol. Chem. 262, 11,140–11,148 (1987).

    CAS  Google Scholar 

  36. R. J. Cousins,Physiol. Rev. 65, 238–309 (1985).

    PubMed  CAS  Google Scholar 

  37. R. D. Comeau, K. W. McDonald, G. L. Tolman, M. Vasak, and F. A. Liberatore,Prep. Biochem. 22, 151–164 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. P. Zhang and J. C. Allen,J. Dairy Sci. 75(Suppl. 1), 106 (1992).

    Google Scholar 

  39. P. Zhang and J. C. Allen,J. Nutr., in press (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Allen, J.C. Free zinc concentration in bovine milk measured by analytical affinity chromatography with immobilized metallothionein. Biol Trace Elem Res 50, 135–148 (1995). https://doi.org/10.1007/BF02789416

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789416

Index Entries

Navigation