Skip to main content
Log in

Dietary subacute zinc deficiency and potassium metabolism

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In a controlled animal experiment the effects of dietary subacute Zn deficiency on growth, Zn concentration, and tissue 42-K distribution were studied. Growth retardation caused lower body weight because both skeletal and heart muscle showed a reduction in cell mass. Zn concentrations were reduced in most tissues, however, they remained unaltered in heart muscle. 42-K activity increased in skeletal muscle and pancreas. We hypothesize the latter reflects the organs rate of metabolism, inducing the exocrine pancreas to increase Zn absorption; in skeletal muscle it may induce also alterations in cell potentiation, causing restless behavior. As suggested by the calculated specific K activity (Bq/mol), the K uptake was highest in liver and bone, high in pancreas and skeletal muscle and low in heart muscle. The latter suggests K retention in heart muscle. Specific activity in plasma and jejunum remained unaltered: K status and absorption seem unaffected. Zn deficiency causes different 42-K activities in the various tissues, that respond by alterations in K metabolism without the induction of K deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Gill III, G. J. Smith, R. W. Wissler, and H. W. Kunz,Science 245, 269–274 (1989).

    Article  PubMed  Google Scholar 

  2. H. Van Herck, J. P. Van Wouwe, M. Veldhuizen, V. Baumans, F. R. Stafleu, and A. C. Beynen,Lab. Animals 23, 328–332 (1989).

    Article  Google Scholar 

  3. J. P. Van Wouwe and J. J. M. Uijlenbroek,Biol. Trace. Elem. Res., accepted.

  4. B. L. Vallee and K. H. Falchuk,Physiol. Rev. 73, 79–118 (1993).

    PubMed  CAS  Google Scholar 

  5. H. H. Sandstead,Amer. J. Dis. Child. 145, 853–859 (1993).

    Google Scholar 

  6. M. K. Song,Mineral Electrolyte Metab.,13, 178–182 (1987).

    CAS  Google Scholar 

  7. M. P. Navarro and M. P. Vaquero, inEncyclopedia of Food Science and Food Technology and Nutrition, R. Macrae, R. K. Robinson, and M. J. Sadler, eds., Academic, London, pp. 3665–3672 (1993).

    Google Scholar 

  8. W. Forth, inKalium, H. J. Holtmeier, ed., Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, Germany, pp. 69–81 (1992).

    Google Scholar 

  9. D. Nelson and N. Henningsen,Scand. J. Clin. Lab. Invest. 43, 317–322 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. A. Golik, D. Modai, Z. Averbukh, M. Sheffy, A. Shamis, N. Cohen, et al.,Metabol. Clin. Experim. 39, 665–667 (1990).

    CAS  Google Scholar 

  11. J. P. Van Wouwe, M. Veldhuizen, J. J. M. De Goey, and C. J. A. Van den Hamer,Pediatr. Res. 29, 391–395 (1991).

    Article  PubMed  Google Scholar 

  12. T. H. J. Naber, C. J. A. Van den Hamer, W. J. M. Van den Broek, and J. H. M. Van Tongeren,Biol. Trace Elem. Res. 35, 137–152 (1992).

    PubMed  CAS  Google Scholar 

  13. J. De Kok, C. Van der Schoot, M. Veldhuizen, and H. Th. Wolterbeek,Biol. Trace Elem. Res. 38, 13–26 (1993).

    Article  PubMed  Google Scholar 

  14. P. G. Reeves and B. L. O'Dell,Clin. Chem. 31, 581–584 (1985).

    PubMed  CAS  Google Scholar 

  15. J. H. Y. Park, C. J. Grandjean, M. H. Hart, S. H. Erdman, P. Pour, and J. A. Vanderhoof,Am. J. Physiol. (Endocrinol. Metabol.) 251(14), E273–E278 (1986).

    CAS  Google Scholar 

  16. F. Tacnet, F. Lauthier, and P. Ripoche,J. Physiol 465, 57–72 (1993).

    PubMed  CAS  Google Scholar 

  17. C. L. White,Biol. Trace Elem. Res. 17, 175–182 (1988).

    PubMed  CAS  Google Scholar 

  18. I. Dørup and T. Clausen,Br. J. Nutr. 66, 493–504 (1991).

    Article  PubMed  Google Scholar 

  19. K. S. Langford and J. P. Miell,Europ. J. Clin. Invest. 23, 503–516 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. Z. T. Cossack,Experient. 40, 498–500 (1984).

    Article  CAS  Google Scholar 

  21. B. C. Spalding, J. G. Swift, and P. Horowicz,J. Membrane Biol. 93, 157–164 (1986).

    Article  CAS  Google Scholar 

  22. A. M. Evangelou and V. P. Kalfakakou,Biol. Trace Elem. Res. 36, 203–208 (1993).

    PubMed  CAS  Google Scholar 

  23. V. P. Kalfakakou, A. M. Evangelou, J. Benveniste, and B. Arnoux,Biol. Trace Elem. Res. 38, 289–299 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. P. O. Wester,Acta Med. Scand. 208, 269–271 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Wouwe, J.P., Veldhuizen, M. Dietary subacute zinc deficiency and potassium metabolism. Biol Trace Elem Res 46, 261–268 (1994). https://doi.org/10.1007/BF02789301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789301

Index Entries

Navigation