Molecular Biotechnology

, Volume 2, Issue 1, pp 15–22 | Cite as

Inverse polymerase chain reaction

An efficient approach to cloning cDNA ends
  • Sheng-He Huang


The conventional polymerase chain reaction (PCR) requires that DNA sequences at both ends of the region to be amplified be known. Inverse PCR (IPCR) and anchored PCR overcome this limitation and amplify flanking unknown DNA sequences by utilizing inverse amplification and a universal primer, rcspectively. The major advantage of IPCR is that two gene-specific primers arc reserved for specific and efficient amplification of the unknown cDNA ends on the basis of a small stretch of known sequence. The protocol consists of five steps: reverse transcription, synthesis of second strand cDNA, circularization of double strand cDNA. reopen the circle DNA, and amplification of the inverse DNA fragment.

Index Entries

Inverse PCR flanking cDNA sequences reverse transcription inverse DNA fragment cDNA cloning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Verma, I. M., Temple, G. F., Fan, H., and Baltimore, D. (1972) In vitro synthesis of double-stranded DNA complimentary to rabbit reticulocyte 10S RNA.Nature 235, 163–169.CrossRefGoogle Scholar
  2. 2.
    Akowitz, A. and Mamuelidis, L. (1989) A novel cDNA/PCR strategy for efficient cloning of small amounts of undefined RNA.Gene 81, 295–306.PubMedCrossRefGoogle Scholar
  3. 3.
    Okayama, H., Kawaichi, M., Brownstein, M., Lee, F., Yokota, T., and Arai, K. (1987) High-efficiency cloning of full-length cDNA; Construction and screening of cDNA expression libraries for mammalian cells.Methods Enzymol. 154, 3–28.PubMedCrossRefGoogle Scholar
  4. 4.
    Brenner, C. A., Tarn, A. W., Nelson, P. A., Engleman, E. G., Suzuki, N., Fry, K. E., and Larrick, J. W. (1989) Message amplification phenotyping (MAPPing): a technique to simultaneously measure multiple mRNAs from small numbers of cells.BioTechniques 7, 1096–1103.PubMedGoogle Scholar
  5. 5.
    Frohman, M. A. (1990) RACE: Rapid amplification of cDNA ends, inPCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic, San Diego, CA., pp. 28–38.Google Scholar
  6. 6.
    Shyamala, V. and Ames, G. F.-L. (1989) Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR.Gene 84 1–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang, S.-H., Jong, A. Y., Yang, W., and Holcenberg, J. (1993) Amplification of gene ends from gene libraries by PCR with single-sided specificity, inMethods Molecular Biology, vol. 15: PCR Protocols (White, B. A., ed.), Humana, Totowa, NJ, pp. 357–363.CrossRefGoogle Scholar
  8. 8.
    Ochman, H., Gerber, A. S., and Hartl, D. L. (1988) Genetic applications of an inverse polymerase chain reaction.Genetics 120, 621–625.PubMedGoogle Scholar
  9. 9.
    Triglia, T., Peterson, M. G., and Kemp, D. J. (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences.Nucleic Acids Res. 16, 8186.PubMedCrossRefGoogle Scholar
  10. 10.
    Huang, S.-H., Hu, Y. Y., Wu, C.-H., and Holcenberg, J. (1990) A simple method for direct cloning cDNA sequence that flanks a region of known sequence from total RNA by applying the inverse polymerase chain reaction.Nucleic Acids Res. 18, 1922.PubMedCrossRefGoogle Scholar
  11. 11.
    Delort, J., Dumas, J. B., Darmon, M. C., and Mallet, J. (1989) An efficient strategy for cloning 5′ extremities of rare transcripts permits isolation of multiple 5′-untranslated regions of rat tryptophan hydroxylase mRNA.Nucleic Acids Res. 17 6439–6448.PubMedCrossRefGoogle Scholar
  12. 12.
    Cusi, M. G., Cioé, L., and Rovera, G. (1992) PCR amplification of GC-rich templates containing palindromic sequences using initial alkali denaturation.BioTechniques 12, 502–504.PubMedGoogle Scholar
  13. 13.
    Lau, E. C., Li, Z.-Q., and Slavkin, S. C. (1993) Preparation of denatured plasmid templates for PCR amplification.BioTechniques 14, 378.PubMedGoogle Scholar
  14. 14.
    Green, I. R. and Sargan, D. R. (1991) Sequence of the cDNA encoding ovine tumor necrosis factor-α: problems with cloning by inverse PCR.Gene 109, 203–210.PubMedCrossRefGoogle Scholar
  15. 15.
    Zilberberg, N. and Gurevitz, M. (1993) Rapid isolation of full length cDNA clones by “Inverse PCR”: purification of a scorpion cDNA family encoding α-neurotoxins.Anal. Biochem. 209, 203–205.PubMedCrossRefGoogle Scholar
  16. 16.
    Austin, C. A., Sng, J.-H., Patel, S., and Fisher, L. M. (1993) Novel HeLa topoisomerase II is the IIβ isoform: complete coding sequence and homology with other type II topoisomerases.Biochim. Biophys. Acta 1172, 283–291PubMedGoogle Scholar
  17. 17.
    Delidow, B. C., Lynch, J. P., Peluso, J. J., and White, B. A. (1993) Polymerase chain reaction: basic protocols, inMethods in Molecular Biology vol 15: PCR Protocols (White, B. A., ed.), Humana, Totowa, NJ, pp. 1–29.CrossRefGoogle Scholar
  18. 18.
    Davis, L. G., Dibner, M. D., and Battey, J. F. (1986)Basic Methods in Molecular Biology, Elsevier, New York.Google Scholar
  19. 19.
    Kru, M. S. and Berger, S. L. (1987) First strand cDNA synthesis primed by oligo(dT).Methods Enzymol. 152, 316–325.Google Scholar
  20. 20.
    Promega (1991)Protocols and Applications (2nd ed.), Promega Corporation, Madison, WI, pp. 199–238.Google Scholar
  21. 21.
    Sambrook, J., Fritch, E. F., and Maniatis, T. (1989)Molecular Cloning, 2nd ed Cold Spring Harbor Laboratory, Cold Spring Harbor NYGoogle Scholar
  22. 22.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T. Mullis, K. B., and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science 239, 487–491PubMedCrossRefGoogle Scholar
  23. 23.
    Moon, I. S. and Krause, M. O. (1991) Common RNA polymerase I II and III upstream elements in mouse 7SK gene locus revealed by the inverse polymerase chain reaction.DNA Cell Biol.,10, 23–32.PubMedGoogle Scholar
  24. 24.
    Strobel, S. A. and Dervan, P. B. (1990) Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation.Science 249, 73–75PubMedCrossRefGoogle Scholar
  25. 25.
    Dreyer, G. B. and Dervan, P. B. (1985) Sequence-specific cleavage of single stranded DNA: Oligodeoxynucleotide-EDTA. Fe(II).Proc. Natl. Acad. Sci. USA 82, 968–972.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang, H., Scholl, R., Browse, J., and Somerville, C. (1988) Double strand DNA sequencing as a choice for DNA sequencing.Nucleic Acids Res. 16, 1220PubMedCrossRefGoogle Scholar
  27. 27.
    Sugino, A., Goodman, H. M., Heynecker, H. L., Shine, J., Boyer, H. W. and Cozzarelli N. R. (1977) Interaction of bacteriophage T4 RNA and DNA ligases in joining of duplex DNA at base-paired ends.J. Biol. Chem. 252, 3987–3994PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Sheng-He Huang
    • 1
  1. 1.Division of Infectious Diseases, Departments of Pediatrics and MicrobiologyUniversity of Southern California, Children’s Hospital Los AngelesLos Angeles

Personalised recommendations