Skip to main content
Log in

Tumor targeting in a murine tumor xenograft model with the (sFv′)2 divalent form of anti-c-erbB-2 single-chain Fv

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

This investigation has utilized novel forms of the single-chain Fv (sFv), wherein a cysteine-containing peptide has been fused to the sFv carboxyl terminus to facilitate disulfide bonding or specific crosslinking of this sFv′ to make divalent (sFv′)2. The 741F8 anti-c-erbB-2 monoclonal antibody was used as the basis for construction of 741F8 sFv, from which the sFv′ and (sFv′)2 derivatives were prepared. Recombinant c-erbB-2 extracellular domain (ECD) was prepared in CHO cells and the bivalency of 741F8 (sFv′)2 demonstrated by its complex formation with ECD. The tumor binding properties of125I-labeled anti-c-erbB-2 741F8 sFv, sFv′, and (sFv′)2 were compared with radiolabeled antidigoxin 26-10 sFv′ and (sFv′)2 controls. Following intravenous administration of radiolabeled species to severe combined immune-deficient (SCID) mice bearing SK-OV-3 tumors (which overexpress c-erbB-2), blood and organ samples were obtained as a function of time over 24 h. Comparative analysis of biodistribution and tumor-to-organ ratios demonstrated the 741F8 sFv, sFv′, and (sFv′)2 had excellent specificity for tumors, which improved with time after injection. This contrasted with nonspecific interstitial pooling in tumors observed with the 26-10 sFv, sFv′, and (sFv′)2, which decreased with time after administration. Tumor localization was significantly better for disulfide or peptide crosslinked 741F8 (sFv′)2 having Gly4Cys tails than for monovalent 741F8 sFv′ or Fab. The superior properties of the 741F8 (sFv′)2 in targeting SK-OV-3 tumors in SCID mice suggests the importance of further investigations of divalent sFv analogs for immunotargeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., McGuire, W. I., et al. (1987).Science 235, 177–182.

    Article  PubMed  CAS  Google Scholar 

  2. Adams, G. P., McCartney, J. E., Tai, M.-S., Oppermann, H., Huston, J. S., Stafford III, W. F., et al. (1993),Cancer Res. 53, 4026–4034.

    PubMed  CAS  Google Scholar 

  3. McCartney, J. E., Tai, M.-S., Oppermann, H., Jin, D., Warren, F. D., Weiner, L. M., et al. (1993),Miami Short Reports 3, 91.

    Google Scholar 

  4. Pack, P. and Plückthun, A. (1992)Biochemistry 31, 1579–1584.

    Article  PubMed  CAS  Google Scholar 

  5. Cumber, A. J., Ward, E. S., Winter, G., Parnell, G. D., and Wawrzynczak, E. J. (1992)J. Immunol. 149, 120–126.

    PubMed  CAS  Google Scholar 

  6. Holliger, P., Prospero, T., and Winter, G. (1993),Proc. Natl. Acad. Sci. USA 90, 6444–6448.

    Article  PubMed  CAS  Google Scholar 

  7. Huston, J. S., Mudget-Hunter, M., Tai, M.-S., McCartney, J., Warren, F., Haber, E., et al. (1991),Meth. Enzymol. 203, 46–88.

    Article  PubMed  CAS  Google Scholar 

  8. McCartney, J. E. Tai, M.-S., Hudziak, R. M., Adams, G. P., Weiner, L. M., Jin, D., et al. (1994) In review.

  9. Tai, M.-S., Mudgett-Hunter, M., Levinson, D., Wu, G. M., and Haber, E. (1990)Biochemistry 29, 8024–8030.

    Article  PubMed  CAS  Google Scholar 

  10. Liu, S. and Stafford, W. F. (1992)Biophys J. 61, A476.

    Google Scholar 

  11. Ansevin, A. T., Roark, D. E., and Yphantis, D.A. (1970)Anal. Biochem. 34, 237–261.

    Article  PubMed  CAS  Google Scholar 

  12. Brenner, S. L., Zlotnick, A., and Stafford, W. F. (1990).J. Mol. Biol. 216, 949–969.

    Article  PubMed  CAS  Google Scholar 

  13. Stafford, W. F. (1994)Methods Enzymol. in press.

  14. Stafford, W. F. (1992),Anal. Biochem. 203, 295–301.

    Article  PubMed  CAS  Google Scholar 

  15. DeNardo, S. J., Peng, J. S., DeNardo, G. L., Mills, S. M., and Epstein, A. L. (1986)Nucl. Med. Biol. 13, 303–310.

    CAS  Google Scholar 

  16. DeNardo, G. L., Krohn, K. A., and DeNardo, S. J. (1977)Cancer (Phila.) 40, 2923–2929.

    Article  CAS  Google Scholar 

  17. Adams, G. P., DeNardo, S. J., Amin, A., Kroger, L. A., DeNardo, G. L., Hellstrom, I., et al. (1992),Antibody Immunoconj. Radiopharma. 5, 81–95.

    CAS  Google Scholar 

  18. Draper, N. R. and Smith, H. (1966)Appl. Reg. Anal. Wiley, New York, pp. 77–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huston, J.S., Adams, G.P., McCartney, J.E. et al. Tumor targeting in a murine tumor xenograft model with the (sFv′)2 divalent form of anti-c-erbB-2 single-chain Fv. Cell Biophysics 24, 267–278 (1994). https://doi.org/10.1007/BF02789238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789238

Index Entries

Navigation