Biological Trace Element Research

, Volume 4, Issue 1, pp 45–56 | Cite as

Distribution and metabolism of iron in muscles of iron-deficient rats

  • Yoshinobu Ohira
  • Jack Hegenauer
  • Paul Saltman
  • V. Reggie Edgerton


Iron-deficiency anemia leads directly to both reduced hemoglobin levels and work performance in humans and experimental animals. In an attempt to observe a direct link between work performance and insufficient iron at the cellular level, we produced severe iron deficiency in female weanling Sprague-Dawley rats following five weeks on a low-iron diet. Deficient rats were compared with normal animals to observe major changes in hematological parameters, body weight, and growth of certain organs and tissues. The overall growth of iron-deficient animals was approximately 50% of normal. The ratio of organ weight: body weight increased in heart, liver, spleen, kidney, brain, and soleus muscle in response to iron deficiency. Further, mitochondria from heart and red muscle retained their iron more effectively under the stress of iron deficiency than mitochondria from liver and spleen.

Metabolism of iron in normal and depleted tissue was measured using tracer amounts of59Fe administered orally. As expected, there was greater uptake of tracer iron by iron-deficient animals. The major organ of iron accumulation was the spleen, but significant amounts of isotope were also localized in heart and brain. In all muscle tissue examined the59Fe preferentially entered the mitochondria. Enhanced mitochondrial uptake of iron prior to any detectable change in the hemoglobin level in experimental animals may be indicative of nonhemoglobin related biochemical changes and/or decrements in work capacity.

Index Entries

Iron, distribution and metabolism in rat muscle metabolism, of Fe in rat muscle rat muscle, Fe distribution and metabolism in iron deficiency, in rat muscle, Fe distribution and metabolism in anemia, effect on hemoglobin levels and work performance hemoglobin, effect of Fe deficiency on work performance, effect of Fe deficiency on 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Ohira, V. R. Edgerton, G. W. Gardner, B. Senewiratne, R. J. Barnard, and D. R. Simpson,Brit. J. Haematol. 41, 365 (1979).Google Scholar
  2. 2.
    V. R. Edgerton, S. L. Bryant, C. A. Gillespie, and G. W. Gardner,J. Nutr. 102, 381 (1972).PubMedGoogle Scholar
  3. 3.
    Y. Ohira, V. R. Edgerton, G. W. Gardner, B. Senewiratne, and D. R. Simpson,Nutr. Rep. Int. 18, 647 (1978).Google Scholar
  4. 4.
    P. Ericsson,Acta Med. Scand. 188, 361 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Ohira, PhD Dissertation, University of Southern California (1980).Google Scholar
  6. 6.
    R. P. Cusack and W. D. Brown,J. Nutr. 86, 383 (1965).PubMedGoogle Scholar
  7. 7.
    P. R. Dallman and H. C. Schwartz,Pediatrics 35, 677 (1965).PubMedGoogle Scholar
  8. 8.
    P. R. Dallman and H. C. Schwartz,J. Clin. Invest. 44, 1631 (1965).PubMedCrossRefGoogle Scholar
  9. 9.
    C. A. Finch, L. R. Miller, A. R. Inamdar, R. Person, K. Seiler, and B. Mackler,J. Clin. Invest. 58, 447 (1976).PubMedGoogle Scholar
  10. 10.
    P. R. Dallman,J. Nutr. 97, 475 (1969).PubMedGoogle Scholar
  11. 11.
    C. A. Finch, P. D. Gollnick, M. P. Hlastala, L. R. Miller, E. Dillmann, and B. Mackler,J. Clin. Invest. 64, 129 (1979).PubMedGoogle Scholar
  12. 12.
    B. J. Koziol, Y. Ohira, D. R. Simpson, and V. R. Edgerton,J. Nutr. 108, 1306 (1978).PubMedGoogle Scholar
  13. 13.
    I. Gutmann and A. W. Wahlefeld,Methods of Enzymatic Analysis,3, 1464 (1978).Google Scholar
  14. 14.
    D. Carmichael, J. Christopher, J. Hegenauer, and P. Saltman,Am. J. Clin. Nutr. 28, 487 (1975).PubMedGoogle Scholar
  15. 15.
    J. B. Chappell and S. V. Perry,Nature 173, 1094 (1954).PubMedCrossRefGoogle Scholar
  16. 16.
    T. O. Kleine and W. D. Steinman,Res. Exp. Med. 172, 19 (1978).CrossRefGoogle Scholar
  17. 17.
    L. A. Sordahl, D. Johnson, Z. R. Blailock, and A. Schwartz,Methods Pharmacol. 1, 247 (1971).Google Scholar
  18. 18.
    E. H. Hartree,Anal. Biochem. 48, 422 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Marklund,Clin. Chim. Acta 92, 229 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    P. R. Dallman, inIron in Biochemistry and Medicine, A. Jacobs and M. Worwood, ed, Academic Press, New York, p. 437.Google Scholar
  21. 21.
    J. R. Goodman, J. B. Warshaw, and P. R. Dallman,Pediat. Res. 4, 244 (1970).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Hunter,Quart. J. Med. New Ser. 15, 107 (1946).Google Scholar
  23. 23.
    H. Rothenbacher and A. R. Sherman,J. Nutr. 110, 1648 (1980).PubMedGoogle Scholar
  24. 24.
    J. Hegenauer, L. Ripley, and P. Saltman, inProteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton, eds., Grune and Stratton, 1977, New York, p. 403.Google Scholar
  25. 25.
    S. Pollack, R. M. Kaufman, and W. H. Crosby,Science 144, 1015 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 1982

Authors and Affiliations

  • Yoshinobu Ohira
    • 1
    • 2
  • Jack Hegenauer
    • 1
    • 2
  • Paul Saltman
    • 1
    • 2
  • V. Reggie Edgerton
    • 1
    • 2
  1. 1.Department of BiologyUniversity of California, San DiegoLa Jolla
  2. 2.Department of KinesiologyUniversity of California, Los AngelesLos Angeles

Personalised recommendations