Skip to main content
Log in

Nickel deficiency alters nickel flux in rat everted intestinal sacs

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was conducted to determine nickel absorption in nickel-deficient rats. Jejunal segments obtained from dietary nickeldepleted (13 μg nickel/kg diet) and nickel-control (1 mg nickel/kg diet) adult rats from the first generation, and suckling pups from the second offspring were used. The nickel transfer across the intestinal epithelium and nickel uptake into the intestine were measured by use of everted jejunal sacs using a wide range of nickel concentrations administered on the luminal side (1.1 x 10-8 M til 1.0 x 10-4 M). Both the intestinal nickel transfer and nickel uptake were influenced by the dietary nickel supply in rat offspring, but not in the adult rats from the first generation. However, in nickel-deficient offspring, the nickel transfer across the small intestine was higher than in nickelcontrol offspring. This difference was greater using low intraluminal nickel concentrations than high nickel concentrations, and was significant at 1.1 x 10-8 M, 6.1 x 10-8 M, 5.1 x 10-7 M, 1.0 x 10-6 M, and 5.0 x 10-6 M. Also, nickel uptake into the intestine was somewhat greater in nickel-deficient rat pups than in nickel-control pups, and significant using 1.1 x 10-7 M and 1.0 x 10-6 M nickel. A definite saturation type kinetic for the intestinal nickel absorption in relation to the intraluminal nickel concentration could not be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Nielsen, D. R. Myron, S. H. Givand, T. J. Zimmerman, and D. A. Ollerich, Nickel deficiency in rats,J. Nutr. 105, 1620–1630 (1975).

    PubMed  CAS  Google Scholar 

  2. M. Kirchgessner and A., Schnegg, Malate dehydrogenase and glucose-6-phosphate dehydrogenase activity in livers of Ni-deficient rats,Bioinorg. Chem. 6, 155–161 (1976).

    Article  PubMed  CAS  Google Scholar 

  3. G. I. Stangl and M. Kirchgessner, Effect of nickel deficiency on various metabolic parameters of rats,J. Anim. Physiol. a. Anim. Nutr. 75, 164–174 (1996).

    CAS  Google Scholar 

  4. G. I. Stangl and M. Kirchgessner, Nickel deficiency alters liver lipid metabolism in rats,J. Nutr.,126, 2466–2473 (1996).

    PubMed  CAS  Google Scholar 

  5. R. Spörl and M. Kirchgessner, Untersuchungen zur verstärkten Speicherung von Eisen, Zink, Mangan und Nickel im trächtigen Organismus,Z. Tierphysiol. Tierernährg. Futtermittelkde.38, 205–210 (1977).

    Google Scholar 

  6. M. Kirchgessner, R. Spörl, and D. A. Roth-Maier, Exkretion im Kot und scheinbare Absorption von Kupfer, Zink, Nickel und Mangan bei nichtgraviden und graviden Sauen mit unterschiedlicher Spurenelementversorgung,Z. Tierphysiol. Tierernährg. Futtermittelkde.44, 98–111 (1980).

    CAS  Google Scholar 

  7. M. Kirchgessner, D. A. Roth-Maier, E. Grassmann, and H. Mader, Verlauf der Fe-, Cu-, Zn-, Ni-und Mn-Konzentration in Sauenmilch wÄhrend einer fünfwöchigen Laktationsperiode,Arch. Tierernährg.32, 853–858 (1982).

    CAS  Google Scholar 

  8. W. Forth, G. Leopold, and W. Rummel, Eisendurchtritt von der Mucosa-zur Serosaseite und umgekehrt an isolierten eisenarmen und normalen Segmenten von Jejunum und Ileum,Naunyn-Schmiedeberg’s Arch. Pharmak. u. exp. Path. 261, 434–440 (1968).

    Article  CAS  Google Scholar 

  9. G. Becker, S. Korpilla-Schäfer, K. Osterloh, and W. Forth, Capacity of the mucosal transfer system and absorption of iron after oral administration in rats,Blut 38, 127–134 (1979).

    Article  PubMed  CAS  Google Scholar 

  10. P. R. Flanagan, J. Haist, and L. S. Valberg, Comparative effects of iron deficiency induced by bleeding and a low-iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium,J. Nutr. 110, 1754–1763 (1980).

    PubMed  CAS  Google Scholar 

  11. M. Kirchgessner, F. J. Schwarz, and E. Grassmann, Intestinal absorption of copper and zinc after dietary depletion,Bioinorg. Chem. 2, 255–262 (1973).

    Article  CAS  Google Scholar 

  12. F. J. Schwarz and M. Kirchgessner, Metabolic dependence of intestinal uptake and transfer of different zinc compounds after deficient and adequate zinc intake,Z. Tierphysiol., Tierernährg. u. Futtermittelkde.39, 68–83 (1977).

    CAS  Google Scholar 

  13. E. Weigand and M. Kirchgessner, Homeostatic adjustments in zinc digestion to widely dietary zinc intake,Nutr. Metab. 22, 101–112 (1978).

    Article  PubMed  CAS  Google Scholar 

  14. W. Windisch and M. Kirchgessner, Zur Messung der homöostatischen Anpassung des Zinkstoffwechsels an eine defizitäre und hohe Zinkversorgung nach alimentärer65Zn-Markierung. 1. Mitteilung: Zum Effekt einer unterschiedlichen Zinkversorgung auf den quantitativen Zinkumsatz im Stoffwechsel adulter Ratten,J. Anim. Physiol. a. Anim. Nutr. 71, 98–107 (1994).

    CAS  Google Scholar 

  15. E. Weigand, M. Kirchgessner, and U. Helbig, True absorption and endogenous fecal excretion of manganese in relation to its dietary supply in growing rats,Biol. Trace Elem. Res. 10, 265–279 (1986).

    CAS  Google Scholar 

  16. F. H. Nielsen, Nickel toxicity, inToxicity of trace elements, R. A. Goyer and M. A. Mehlmann, eds.,Adv. Mod. Toxicol. vol. 2, Wiley, New York, pp. 129–146 (1977).

    Google Scholar 

  17. M. Kirchgessner and A. Schnegg, Alpha-Amylase and DehydrogenasenaktivitÄt bei subsoptimaler Ni-Versorgung,Ann. Nutr. Metab. 25, 307–310 (1981).

    PubMed  CAS  Google Scholar 

  18. T. H. Wilson and G. Wiseman, The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface,J. Physiol. 123, 116–125 (1954).

    PubMed  CAS  Google Scholar 

  19. F. J. Schwarz and M. Kirchgessner, Zur Messung der Kupferabsorption mittels umgestülpter DarmsÄckchen,Internat. J. Vit. Nutr. Res. 42, 592–599 (1972).

    CAS  Google Scholar 

  20. U. Eidelsburger and M. Kirchgessner, In vitro Untersuchungen zum Ort der intestinalen Nickel-Absorption mit evertierten Darmsäckchen von Ratten,J. Anim. Physiol. a. Anim. Nutr. 72, 158–164 (1994).

    CAS  Google Scholar 

  21. E. Weigand and M. Kirchgessner, Total true efficiency of zinc supply status in young rats,J. Nutr. 110, 469–480 (1980).

    PubMed  CAS  Google Scholar 

  22. M. Kreuzer and M. Kirchgessner, Endogenous iron excretion. A quantitative means to control iron metabolism?,Biol. Trace Elem. Res. 29, 77–92 (1991).

    PubMed  CAS  Google Scholar 

  23. U. Eidelsburger, G. I. Stangl, and M. Kirchgessner, The effect of nickel, iron and cobalt on nickel-absorption in nickel-deficient and nickel-control rats using everted intestinal segments,Trace Elements a. Electrolytes,13, 182–185 (1996).

    CAS  Google Scholar 

  24. U. Eidelsburger and M. Kirchgessner, In vitro Untersuchungen zum Einfluß variierender Ni-Konzentrationen auf die intestinale Nickel-Absorption mit evertierten Darmsäckchen,J. Anim. Physiol. a. Anim. Nutr. 73, 47–55 (1995).

    Article  CAS  Google Scholar 

  25. E. C. Foulkes and D. M. McMullen, On the mechanism of nickel absorption in the rat jejunum,Toxicology 38, 35–42 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. J. Tallkvist and H. Tjälve, Nickel absorption from perfused rat jejunal and ileal segments,Pharmacology a. Toxicology 75, 233–243 (1994).

    CAS  Google Scholar 

  27. U. Eidelsburger and M. Kirchgessner, Zum Einfluß der Lebendmasse von Ratten auf die intestinale in vitro Absorption von Nickel mit evertierten DarmsÄckchen,Arch. Anim. Nutr.,49, 287–291 (1996).

    CAS  Google Scholar 

  28. W. Forth and W. Rummel, Absorption of iron and chemically related metals in vitro and in vivo: specificity of the iron binding system in the mucosa of the jejunum, inIntestinal absorption of metal ions, trace elements and radionuclides, S. C. Skoryma and D. Waldron-Edward, eds., Pergamon, Oxford, pp. 173–191 (1971).

    Google Scholar 

  29. L. S. Valberg and P. R. Flanagan, Intestinal absorption of iron and chemically related metals, inBiological aspects of metals and metal-related diseases, B. Sarkar, ed., Raven, New York, pp. 41–66 (1983).

    Google Scholar 

  30. P. Becker, U. Dörstelmann, W. Frommberger, and W. Forth, On the absorption of cobalt(II)-and nickel(II)-ions by isolated segments in vitro of rats, in3rd Spurenelement-Symposium Nickel, M. Anke, H.-J. Schneider and C. Brückner, eds., Friedrich-Schiller Universität, Jena, pp. 79–85 (1980).

    Google Scholar 

  31. L. Chirasiri and G. Izak, The effect of acute haemorrhage and haemolysis on intestinal iron absorption in the rat,Br. J. Haematol.12, 611–622 (1966).

    PubMed  CAS  Google Scholar 

  32. W. Forth and W. Rummel, Zur Frage der Regulation der Eisenabsorption durch Gastroferrin, ein eisenbindendes Protein des Magensaftes,Klin. Wochenschr.46, 1003–1005 (1968).

    Article  PubMed  CAS  Google Scholar 

  33. J. P. Wack and J. P. Wyatt, Studies on ferrodynamics I. Gastrointestinal absorption of59Fe in the rat under differing dietary states,Pathology 67, 237–247 (1959).

    CAS  Google Scholar 

  34. M. Kirchgessner, Homeostasis and homeorhesis in trace element metabolism, inTrace elements in man and animals, M. Anke, D. Meissner, and C. F. Mills, eds., Friedrich Schiller University, Jena, pp. 4–21 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stangl, G.I., Eidelsburger, U. & Kirchgessner, M. Nickel deficiency alters nickel flux in rat everted intestinal sacs. Biol Trace Elem Res 61, 253–262 (1998). https://doi.org/10.1007/BF02789086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789086

Index Entries

Navigation