Skip to main content
Log in

Different selenium-containing proteins in the extracellular and intracellular media of leucocytes cultivated in vitro

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this communication is to elucidate if selenium plays a role in the function of granulocytes and lymphocytes. Thus, the incorpo ration of selenium in proteins from granulocytes and lymphocytes cultured with 1ΜCi/mL radioactive Na2 75SeO3 was studied. The protein peaks containing75Se from two columns of Heparin Sepharose CL-6B and Sephacryl S-200 HR were separated further by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results showed that the incorporation of75Se into granulocytes was about six times higher than that of lymphocytes during a 96-h cultivation, however, the GSH-Px activity in granulocytes did not change significantly. On the other hand, the GSH-Px activity of lymphocytes rose significantly after three days cultivation. These data indicated that the main chemical form of selenium in granulocytes was not GSH-Px. Results from SDS-PAGE revealed a strongly75Se-labeled protein band with subunit molecular weight of 15 kDa in the supernatant of granulocyte homogenate. However, the main chemical forms of selenium in the culture media of granulocytes and lymphocytes were found to be selenoprotein P. The different forms of selenium-containing proteins in the intracellular and extracellular media of granulocytes indicated the different functions of these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Halliwell and J. M. C. Gutheridge,Free Radicals in Biology and Medicine, 2nd ed., Clarendon, Oxford App. 372–390 (1989).

    Google Scholar 

  2. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra, Selenium: biochemical role as a component of glutathione proxidase,Science 179, 588–590 (1973).

    Article  PubMed  CAS  Google Scholar 

  3. F. Ursini, M. Maiorino, and C. Gregolin, The selenoenzyme phospholipid hydroperoxide glutathione peroxidase,Biochim. Biophys. Acta 839, 62–70 (1985).

    PubMed  CAS  Google Scholar 

  4. K. Takahashi, N. Avissar, J. Whitin, and H. Cohen, Purification and characterization of human plasma glutathione peroxidase: a selenoglucoprotein distinct from the known cellular enzyme,Arch. Biochem. Biophys. 256, 677–686 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. F. F. Chu, J. H. Doroshow, and R. S. Esworthy, Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI,J. Biol. Chem. 268, 2571–2576 (1993).

    PubMed  CAS  Google Scholar 

  6. D. Behne, A. Kyriakopoulos, H. Meinhold, and J. Kohrle, Identification of type I iodothyronine 5′-deiodinase as a selenoenzyme,Biochem. Biophys. Res. Commun. 173, 1143–1149 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. J. R. Arthur, F. Nicol, and G. J. Beckett, Hepatic iodothyronine 5′-deiodinase. The role of selenium,Biochem. J. 272, 537–540 (1990).

    PubMed  CAS  Google Scholar 

  8. M. J. Berry, L. Banu, and P. R. Larsen, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme,Nature 349, 438–440 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. W. Croteau, S. L. Whittemore, M. J. Schneider, and D. L. St. Germain, Cloning and expression of a cDNA for a mammalian type 3 iodothyronine deiodinase,J. Biol. Chem. 270, 16,569–16,575 (1995).

    CAS  Google Scholar 

  10. K. E. Hill, R. S. Lloyd, J. G. Yang, R. Read, and R. F. Burk, The cDNA for rat selenoprotein P contains ten TGA codons in the open reading frame,J. Biol. Chem. 266, 10,050–10,053 (1991).

    CAS  Google Scholar 

  11. R. F. Burk and K. E. Hill, Selenoprotein P. A selenium-rich extracellular glycoprotein,J. Nutr. 124, 1891–1897 (1994).

    PubMed  CAS  Google Scholar 

  12. H. S. Chittum, S. Himeno, K. E. Hill, and R. F. Burk, Multiple forms of selenoprotein P in rat plasma,Arch. Biochem. Biophys. 325, 124–128 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. J. T. Deagen, J. A. Butler, B. A. Zachara, and P. D. Whanger, Determination of the distribution of selenium between glutathion peroxidase, selenoprotein P, and albumin in plasma,Anal. Biochem. 208, 176–181 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. B. Akesson, T. Bellew, and R. F. Burk, Purification of selenoprotein P from human plasma,Biochim. Biophys. Acta 1204, 243–249 (1994).

    PubMed  CAS  Google Scholar 

  15. I. Karimpour, M. Cutler, D. Shih, J. Smith, and K. C. Kleene, Sequence of the gene encoding the mitochondrial capsule selenoprotein of mouse sperm: identification of three in-phase TGA selenocysteine codons,DNA Cell Biol. 11, 693–699 (1992).

    PubMed  CAS  Google Scholar 

  16. S. C. Vendeland, M. A. Beilstein, C. L. Chen, O. N. Jensen, E. Barofsky, and P. D. Whanger, Purification and properties of selenoprotein W from rat muscle,J. Biol. Chem. 268, 17,103–17,107 (1993).

    CAS  Google Scholar 

  17. M. A. Beilstein, S. C. Vendeland, E. Barofsky, O. N. Jensen, and P. D. Whanger, Selenoprotein Wof rat muscle binds glutathion and an unknown small molecular weight moiety,J. Inorg. Biochem. 61, 117–124 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. M. Kalcklosch, A. Kyriakopoulos, C. Hammel, and D. Behne, A new selenoprotein found in the glandular epithelial cells of the rat prostate,Biochim. Biophys. Res. Commun. 217, 162–170 (1995).

    Article  CAS  Google Scholar 

  19. J. Clausen and S. A. Nielsen, Comparison of whole blood selenium values and erythrocyte glutathione peroxidase activities of normal individuals on supplementation with selenate, selenite, L-selenomethionine, and high selenium yeast,Biol. Trace Elem. Res. 15, 125–138 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. B. Åkesson and B. Mårtensson, Heparin interacts with a selenoprotein in human plasma,J. Inorg. Biochem. 33, 257–261 (1988).

    Article  PubMed  Google Scholar 

  21. G. Riva: Das Serurneiweissbild,Verlag Hans Huber, Bern (1960).

  22. H. E. Ganther and H. S. Hsieh, Mechanism for the conversion of selenite to selenides in mammalian tissues, inTrace Element Metabolism in Animals, W. G. Hoekstra, J. W. Suttie, H. E. Ganther and W. Mertz, eds., Butterworths, London, pp. 339–353 (1974).

    Google Scholar 

  23. J. T. Deagen, M. A. Beilstein, and P. D. Whanger, Chemical forms of selenium in selenium containing proteins from human plasma,J. Inorg. Biochem. 41, 261–268 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. P. A. Southorn and G. Powis, Free radicals in medicine. I. Chemical nature and biologic reactions,Mayo Clin. Proc. 63, 381–389 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Lauridsen, E. & Clausen, J. Different selenium-containing proteins in the extracellular and intracellular media of leucocytes cultivated in vitro. Biol Trace Elem Res 61, 237–252 (1998). https://doi.org/10.1007/BF02789085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789085

Index Entries

Navigation