Skip to main content
Log in

Zinc and manganese bioavailability from human milk and infant formula used for very low birthweight infants, evaluated in a rat pup model

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The bioavailability of zinc and manganese from diets used for very low birthweight infants was investigated in a rat pup model using radioisotopes. The effect of protein source and content and of pasteurization was evaluated, and two different approaches for evaluation of zinc and manganese bioavailability in the rat pup model were compared. Zinc and manganese bioavailability from the studied human milk and infant formula for very low birthweight infants was high. Liver uptake of65Zn from labeled premature infant diets in sucklings rat pups was 26–29%, and absorption calculated as the difference between administered dose and nonabsorbed activity 6 h after oral intubation was 93–95%. Retention of manganese calculated as the sum of54Mn retained by organs and carcass was 85–95% from human milk and premature infant formula and absorption calculated from nonabsorbed activity was 83–88% after 6 h. Fortification of early human milk significantly increased the bioavailability of zinc. No effect of pasteurization of human milk was found on zinc or manganese bioavailability. Liver zinc uptake was found to be a more sensitive parameter than absorption for evaluation of diets with a high zinc bioavailability. Measurement of retained activity of manganese in carcass and organs was judged to be the preferred parameter for evaluation of diets with high manganese availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Committee on Nutrition, American Academy of Pediatrics, Zinc,Pediatrics 62, 408–412 (1978).

    Google Scholar 

  2. J. J. Steichen, S. K. Krug-Wispé, and R. C. Tsang,Clin. Perinat. 14, 131–171 (1987).

    CAS  Google Scholar 

  3. D. L. Bilinski, R. A. Ehrenkranz, J. Cooley-Jacobs, and J. McGuire,Arch. Dermatol. 123, 1221–1224 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. P. J. Aggett, D. J. Atherton, J. More, J. Davey, H. T. Delves, and J. T. Harries,Arch. Dis. Child. 58, 547–550 (1980).

    Article  Google Scholar 

  5. K. Weismann and M. Arrøe,Ugeskr. Lœg. 152, 2571, 2572 (1990).

    CAS  Google Scholar 

  6. S. A. Atkinson, D. Whelan, R. K. Whyte, and B. Lönnerdal,Am. J. Dis. Child. 143, 608–611 (1989).

    PubMed  CAS  Google Scholar 

  7. J. K. Friel, W. L. Andrews, J. D. Matthew, D. R. Long, A. M. Cornel, M. Cox, E. McKim, and G. O. Zerbe,J. Pediatr. Gastroenterol. Nutr. 17, 97–104 (1993).

    PubMed  CAS  Google Scholar 

  8. N. F. Butte, C. Garza, C. A. Johnson, E. O'Brian Smith, and B. L. Nichols,Early Hum. Dev. 9, 153–162 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. C. E. Casey, M. C. Neville, and K. M. Hambidge,Am. J. Clin. Nutr. 49, 773–785 (1989).

    PubMed  CAS  Google Scholar 

  10. B. Sandström, C. L. Keen, and B. Lönnerdal,Am. J. Clin. Nutr. 38, 420–428 (1983).

    PubMed  Google Scholar 

  11. B. Meined, J. C. Bode, W. Koenig, and F. W. Richter,Biol. Neonate. 36, 225–232 (1979).

    Article  Google Scholar 

  12. E. Vouri,Acta Pœdiatr. Scand. 68, 571–573 (1979).

    Google Scholar 

  13. W. Y. Chan, J. M. Bates, and O. M. Rennert,J. Nutr. 112, 642–651 (1982).

    PubMed  CAS  Google Scholar 

  14. B. Lönnerdal, C. L. Keen, and L. S. Hurley,Am. J. Clin. Nutr. 41, 550–559 (1985).

    PubMed  Google Scholar 

  15. C. L. Keen, J. C. Bell, and B. Lönnerdal,J. Nutr. 116, 395–402 (1986).

    PubMed  CAS  Google Scholar 

  16. N. C. R. Räihä,Adv. Pediatr. 36, 347–368 (1989).

    PubMed  Google Scholar 

  17. K. F. Michaelsen, L. Skafte, J. H. Badsberg, and M. Jørgensen,J. Pediatr. Gastroenterol. Nutr. 11, 229–239 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. B. Sandström, Å. Cederblad, and B. Lönnerdal,Am. J. Dis. Child. 137, 726–729 (1983).

    PubMed  Google Scholar 

  19. M. M. Brennan, A. Flynn, and P. A. Morrissey,Proc. Nutr. Soc. 48, 39A (1989).

    Google Scholar 

  20. M. Reddy and A. Flynn,Proc. Nutr. Soc. 50, 184A (1991).

    Google Scholar 

  21. K. F. Michaelsen, S. B. Pedersen, L. Skafte, P. Jæger, and B. Peitersen,J. Pediatr. Gastroenterol. Nutr. 7, 229–235 (1988).

    PubMed  CAS  Google Scholar 

  22. K. Cashman, A. Flynn, and M. Harrington,Proc. Nutr. Soc. 50, 185A (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, E., Sandström, B. & Andersen, O. Zinc and manganese bioavailability from human milk and infant formula used for very low birthweight infants, evaluated in a rat pup model. Biol Trace Elem Res 49, 53–65 (1995). https://doi.org/10.1007/BF02789002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789002

Index Entries

Navigation