Skip to main content
Log in

Zinc, copper, and zinc- or copper-dependent enzymes in human hypertension

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Imbalance of zinc and copper status has been hypothesized in human hypertension. A case-control study was carried out to elucidate the possible relationship between zinc and copper status and essential hypertension. Thirty-one subjects affected by mild stable hypertension, pharmacologically untreated, were investigated together with 31 normotensive controls individually matched for sex, age, and smoking habits. Zinc and copper in serum and urine were measured, and serum activities of alkaline phosphatase (AP), lactic dehydrogenase (LDH), copper-zinc superoxide dismutase (Cu−Zn SOD), lysyl oxidase (LOX), and monoamine oxidase (MAO) were evaluated. No significant difference in serum and urine zinc and copper content as far as in serum activity of zinc (AP and LDH) or copper (Cu−Zn SOD, LOX, and MAO)-dependent enzymes was found between hypertensives and normotensives. Positive relationships were found in normotensives between serum and urine levels of zinc (r=0.577;p=0.001) and copper (r=0.394;p=0.028), and between serum copper and Cu−Zn SOD (r=0.534;p=0.002). In normotensives, diastolic blood pressure and serum zinc were positively related (r=0.370;p=0.041). In hypertensives, inverse correlations were observed between diastolic blood pressure and AP (r=−0.498;p=0.004) and Cu−Zn SOD (r=−0.452;p=0.011), and between systolic blood pressure and LOX (r=−0.385;p=0.033). Diastolic blood pressure was related to LDH inversely in hypertensives (r=−0.357;p=0.049) and positively in normotensives (r=0.457;p=0.010). In normotensives, diastolic blood pressure was inversely related with MAO (r=−0.360;p=0.046). These findings support the hypothesis that an imbalance of zinc and copper status might be involved in human hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Klevay,Am. J. Clin. Nutr. 28, 764–774 (1975).

    PubMed  CAS  Google Scholar 

  2. L. M. Klevay, inMetabolism of Trace Elements in Man: Developmental Biology and Genetic Implications, O. H. Rennert and W.-Y. Chan, eds., CRC, Boca Raton, FL, pp. 129–157 (1984).

    Google Scholar 

  3. L. M. Klevay,Clin. Geriatric. Med. 3, 361–371 (1987).

    CAS  Google Scholar 

  4. F. J. Kok, C. M. Van Duijn, A. Hofman, G. B. Van Der Voet, F. A. De Wolff, C. H. Paays, and H. A. Valkenburg,Am. J. Epidemiol. 128, 352–359 (1988).

    PubMed  CAS  Google Scholar 

  5. L. M. Klevay, inCopper Bioavailability and Metabolism, C. Kies, ed., Plenum, New York, pp. 197–208 (1990).

    Google Scholar 

  6. J. T. Salonen, R. Salonen, H. Korpela, S. Suntioinen, and J. Tuomilehto,Am. J. Epidemiol. 134, 268–276 (1991).

    PubMed  CAS  Google Scholar 

  7. G. S. Thind and G. H. Fischer,Clin. Sci. 51, 483–486 (1976).

    CAS  Google Scholar 

  8. P. Pras, J. M. Bayada, F. Bertrand, P. Lapalus, R. Garaffo, E. C. Savini, and P. Babeau,Sem. Hôp. Paris 59, 1519–1522 (1983).

    PubMed  CAS  Google Scholar 

  9. R. Bartolin, G. Bouvenot, C. Arnaud, J. M. Turzanski, P. Gadroy, and P. A. Rey,Rev. Méd. Interne 6, 280–284 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. R. B. Arora, A. Hameed, T. A. V. Subramanian, S. Roy, E. A. Khan, K. Kheterpal, and S. U. Khan, inMetabolism of Minerals and Trace Elements in Human Disease, M. Abdulla, H. Dashti, B. Sarkar, H. Al-Sayer and N. Al-Naqeeb, eds., Smith-Gordon, London, pp. 57–60 (1989).

    Google Scholar 

  11. D. Meißner, R. Schüttig, and F. Reinhardt, in6th International Trace Element Symposium, vol. 2, M. Anke, W. Baumann, H. Bräunlich, Chr. Brückner, B. Groppel, and M. Grün, eds., Friedrich-Schiller-Universität, Jena, pp. 699–705 (1989).

    Google Scholar 

  12. D. A. Olatunbosun, J. O. Bolodeoku, T. O. Cole, and B. K. Adadevoh,Bull. W.H.O. 53, 134–135 (1976).

    PubMed  CAS  Google Scholar 

  13. G. Frithz and G. Ronquist,Acta Med. Scand. 205, 647–649 (1979).

    PubMed  CAS  Google Scholar 

  14. J. M. McKenzie and D. L. Kay,N.Z. Med. J. 79, 68–70 (1983).

    Google Scholar 

  15. G. Vivoli, P. Borella, M. Bergomi, and G. Fantuzzi,Sci. Total. Environ. 66, 55–64 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. C. T. Sempos, J. L. Greger, N. E. Johnson, E. L. Smith, and F. M. Seyedabadi,Nutr. Rep. Int. 27, 1013–1020 (1983).

    CAS  Google Scholar 

  17. J. Staessen, F. Sartor, H. Roels, C. J. Bulpitt, F. Claeys, G. Ducoffre, R. Fagard, R. Lauwerijs, P. Lijnen, D. Rondia, L. Thijs, and A. J. Amery,Hum. Hypertens. 5, 485–494 (1991).

    CAS  Google Scholar 

  18. J. M. McKenzie, B. E. Guthrie, and I. A. M. Prior,Am. J. Clin. Nutr. 31, 422–428 (1978).

    PubMed  CAS  Google Scholar 

  19. N. W. Solomons,Am. J. Clin. Nutr. 32, 856–871 (1979).

    PubMed  CAS  Google Scholar 

  20. G. Everett and J. Apgar,Acta Pharmacol. Toxicol. (Copenh.)59 (Suppl. 7), 163–165 (1986).

    CAS  Google Scholar 

  21. H. C. Lukaski, L. M. Klevay, and D. B. Milne,Eur. J. Appl. Physiol. 58, 74–80 (1988).

    Article  CAS  Google Scholar 

  22. A. S. Prasad, inCurrent Trends in Trace Elements Research, G. Chazot, M. Abdulla and P. Arnaud, eds., Smith-Gordon, London, pp. 162–168 (1989).

    Google Scholar 

  23. P. W. F. Fischer, A. Giroux, and M. R. L'Abbé,Am. J. Clin. Nutr. 40, 743–746 (1984).

    PubMed  CAS  Google Scholar 

  24. R. Uauy, C. Castillo-Duran, M. Fisberg, N. Fernandez, and A. Valenzuela,J. Nutr. 115, 1650–1655 (1985).

    PubMed  CAS  Google Scholar 

  25. P. J. Aggett,Clin. Endocrinol. Metab. 14, 513–543 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. D. B. Milne and P. E. Johnson,Clin. Chem. 39, 883–887 (1993).

    PubMed  CAS  Google Scholar 

  27. D. B. Milne inTrace Elements in Man and Animals—TEMA 8, M. Anke, D. Meissner and C. F. Mills, eds., Verlag Media Touristik, Gersdorf, pp. 1079–1082 (1993).

    Google Scholar 

  28. C. H. Hill, B. Starcher, and C. Kim,Fed. Proc. 26, 129–133 (1967).

    PubMed  CAS  Google Scholar 

  29. R. C. Siegel, S. R. Pinnell, and G. R. Martin,Biochemistry 9, 4486–4492 (1970).

    Article  PubMed  CAS  Google Scholar 

  30. D. Tinker and R. B. Rucker,Physiol. Rev. 65, 607–657 (1985).

    PubMed  CAS  Google Scholar 

  31. R. A. DiSilvestro,J. Nutr. 118, 474–479 (1988).

    PubMed  CAS  Google Scholar 

  32. K. G. D. Allen and L. M. Klevay,Atherosclerosis 29, 81–93 (1978).

    Article  PubMed  CAS  Google Scholar 

  33. J. A. Bevan, R. D. Bevan, and S. P. Duckles, inHandbook of Physiology, Section 2, vol. II, D. F. Bohr, A. P. Somlyo and H. V. Sparks, eds., American Physiological Society, Bethesda, pp. 515–566 (1980).

    Google Scholar 

  34. J. R. Prohaska and L. J. Heller,J. Nutr. 112, 2142–2150 (1982).

    PubMed  CAS  Google Scholar 

  35. B. N. Wu, D. M. Medeiros, K-N. Lin, and B. M. Thorne,Nutr. Res. 4, 305–314 (1984).

    Article  CAS  Google Scholar 

  36. M. Esler, G. Jennings, G. Lambert, I. Meredith, M. Horne, and G. Eisenhofer,Physiol. Rev. 70, 963–985 (1990).

    PubMed  CAS  Google Scholar 

  37. T. A. Garrow, M. S. Clegg, G. Metzler, and C. L. Keen,Hypertension 17, 793–797 (1991).

    PubMed  CAS  Google Scholar 

  38. D. A. Schuschke, M. W. R. Reed, J. T. Saari, and F. N. Miller,J. Nutr. 122, 1547–1552 (1992).

    PubMed  CAS  Google Scholar 

  39. J. T. Saari,Proc. Soc. Exp. Biol. Med. 200, 19–24 (1992).

    PubMed  CAS  Google Scholar 

  40. G. Carelli, M. C. Altavista, and F. Aldrighetti,At. Spectrosc. 3, 200–202 (1982).

    CAS  Google Scholar 

  41. Y. Sun, L. W. Oberley, and Y. Li,Clin. Chem. 34, 497–500 (1988).

    PubMed  CAS  Google Scholar 

  42. C-T. Yuen, D. Easton, K. J. Misch, and E. L. Rhodes,Br. J. Dermatol. 116, 643–649 (1987).

    Article  PubMed  CAS  Google Scholar 

  43. V. Iyengar and J. Woittiez,Clin. Chem. 34, 474–481 (1988).

    PubMed  CAS  Google Scholar 

  44. C. Minoia, E. Sabbioni, P. Apostoli, R. Pietra, L. Pozzoli, M. Gallorini, G. Nicolaou, L. Alessio, and E. Capodaglio,Sci. Total. Environ. 95, 89–105 (1990).

    Article  PubMed  CAS  Google Scholar 

  45. M. T. Baer and J. C. King,Am. J. Clin. Nutr. 39, 556–570 (1984).

    PubMed  CAS  Google Scholar 

  46. J. R. Turnlund, C. L. Keen, and R. G. Smith,Am. J. Clin. Nutr. 51, 658–664 (1990).

    PubMed  CAS  Google Scholar 

  47. L. M. Klevay,Nutr. Rep. Int. 35, 999–1005 (1987).

    CAS  Google Scholar 

  48. D. M. Medeiros,Nutr. Res. 7, 231–235 (1987).

    Article  CAS  Google Scholar 

  49. R. J. Gryglewski, R. M. J. Palmer, and S. Moncada,Nature 320, 454–456 (1986).

    Article  PubMed  CAS  Google Scholar 

  50. G. M. Rubanyi and P. M. Vanhoutte,Am. J. Physiol. 250, H822-H827 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vivoli, G., Bergomi, M., Rovesti, S. et al. Zinc, copper, and zinc- or copper-dependent enzymes in human hypertension. Biol Trace Elem Res 49, 97–106 (1995). https://doi.org/10.1007/BF02788959

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788959

Index Entries

Navigation