Skip to main content

Advertisement

Log in

The effect of replicate number and image analysis method on sweetpotato [Ipomoea batatas (L.) Lam.] cDNA microarray results

  • Commentary
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Microarray analysis makes it possible to determine the relative expression of thousands of genes simultaneously. It has gained popularity at a rapid rate, but many caveats remain. In an effort to establish reliable microarray protocols for sweetpotato [Ipomoea batatas (L.) Lam.], we compared the effect of replication number and image analysis software with results obtained by quantitative rela-time PCR (Q-RT-PCR). Sweetpotato storage root development is the most economically important process in sweetpotato. In order to identify genes that may play a role in this process, RNA for microarray analysis was extracted from sweetpotato fibrous and storage roots. Four data sets, Spot4, Spot6, Finder4 and Finder6, were created using 4 or 6 replications, and the image analysis software of UCSF Spot or TIGR Spotfinder were used for spot detection and quantification. The ability of these methods to identify significant differential expression between treatments was investigated. The data sets with 6 replications were better at identifying genes with significant differential expression than the ones of 4 replications. Furthermore when using 6 replicates, UCSF Spot was superior to TIGR Spotfinder in identifying genes differentially expressed (18 out of 19) based on Q-RT-PCR. Our study shows the importance of proper replication number and image analysis for microarray studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGPase:

ADP-glucose pyrophosphorylase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

limma:

Linear Models for Microarray Data

Q-RT-PCR:

quantitative real-time PCR

SuSy:

Sucrose Synthase

TAIR:

The Arabidopsis Information Resource

TIGR:

The Institute for Genomic Research

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, and Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.

    CAS  Google Scholar 

  • Bas A, Forsberg G, Hammarström S, and Hammarström M-L (2004) Utility of the house-keeping genes 18S rRNA, β-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol 59: 566–573.

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y and Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300.

    Google Scholar 

  • Brinker M, van Zyl L, Liu W, Craig D, Sederoff RR, Clapham DH, and von Arnold S (2004) Microarray analyses of gene expression during adventitious root development inPinus contorta. Plant Physiol 135: 1526–1539.

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet suppl. 32: 490–495.

    Article  CAS  Google Scholar 

  • Doyle JJ and Doyle JL (1987) Isolation of plant material from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Drăghici S (2003) Data analysis tools for DNA microarrays. Chapman & Hall/CRC, London, UK.

    Google Scholar 

  • Ewing B and Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186–194.

    PubMed  CAS  Google Scholar 

  • Food and Agricultural Organization (1993) 1992 Production year-book. Food and Agricultural Organization statistics series vol. 46, No. 112, Rome.

  • Gilliland LU, Kandasamy MK, Pawloski LC, and Meagher RB (2002) Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act2-1 mutation. Plant Physiol 130: 2199–2209.

    Article  PubMed  CAS  Google Scholar 

  • Glisin V, Crkvenjakov R, and Byus C (1974) Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13: 2633–2637.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith ZG and Dhanasekaran N (2004) The microrevolution: applications and impacts of microarray technology on molecular biology and medicine (review). Int J Mol Med 13: 483–495.

    PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective Bonferroni test procedure. Scand J Stat 6: 65–70.

    Google Scholar 

  • Huang X and Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9: 868–877.

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Haas N, Hunsperger J, Larkin J, Snustad DP, and Silflow CD (1990) The b-tubulin gene family in Zea mays: two differentially expressed b-tubulin genes. Plant Mol Biol 15: 957–972.

    Article  PubMed  CAS  Google Scholar 

  • Iskandar HM, Simpson RS, Casu RE, Bonnett GD, MaClean DJ, and Manners JM (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep 11: 325–337.

    Google Scholar 

  • Jain AN, Tokuyasu TA, Snijders AM, Segraves R, Albertson DG, and Pinkel D (2002) Fully automatic quantification of microarray data. Genome Res 12: 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Joyce CM, Villemur R, Snustad DP, and Silflow CD (1992) Change in isotype expression along the developmental axis of seedling root. J Mol Biol 227: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Kendziorski C, Irizarry RA, Chen K-S, Haag JD, and Gould MN (2005) On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci USA 102(12): 4252–4257.

    Article  PubMed  CAS  Google Scholar 

  • Kim B-R, Nam H-Y, Kim S-U, Kim S-I, and Chang Y-J (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25: 1869–1872.

    Article  PubMed  CAS  Google Scholar 

  • Korn EL, Habermann JK, Upender MB, Ried T, and McShane LM (2004) Objective method of comparing DNA microarray image analysis systems. BioTechniques 6(6): 960–967.

    Google Scholar 

  • Larkin JE, Frank BC, Gaspard RM, Duka I, Gavras H, and Quackenbush J (2004) Cardiac transcriptional response to acute and chronic angiotensin II treatments. Physiol Genomics 18: 152–166.

    Article  PubMed  CAS  Google Scholar 

  • Lee ML, Kuo FC, Whitmore GA, and Sklar J (2000) Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci USA 97: 9834–9839.

    Article  PubMed  CAS  Google Scholar 

  • Li X-Q and Zhang D (2003) Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweetpotato. Plant Cell Physiol 44(6): 630–636.

    Article  PubMed  CAS  Google Scholar 

  • Pavlidis P, Li Q, and Noble WS (2003) The effect of replication on gene expression microarray experiments. Bioinformatics 19(13): 1620–1627.

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Rueda L, Ali A, and Ngom A (2005) Spot detection and image segmentation in DNA microarray data. Appl Bioinformatics 4(1): 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Ringli C, Baumberger N, Diet A, Frey B, and Keller B (2002) ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol 129: 1464–1472.

    Article  PubMed  CAS  Google Scholar 

  • Rosa GJM, Steibel JP, and Tempelman RJ (2005) Reassessing design and analysis of two-colour microarray experiments using mixed effects models. Comp Funct Genomics 6: 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, and Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34(2): 374–378.

    PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, and Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR (2003) Tuber storage proteins. Ann Bot 91: 755–769.

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK and Speed TP (2003) Normalization of cDNA microarray data. Methods 31: 265–273.

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3(1): Article 3.

  • Smyth GK (2005) Limma: linear models for microarray data. in: Gentleman R, Carey V, Dudoit S, Irizarry R, and Huber W (eds), Bioinformatics and computational biology solutions using R and bioconductor, pp. 397–420, New York: Springer.

    Chapter  Google Scholar 

  • Smyth GK, Michaud J, and Scott H (2005) The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21(9): 2067–2075.

    Article  PubMed  CAS  Google Scholar 

  • Spruill SE, Lu J, Hardy S, and Weir B (2002) Assessing sources of variability in microarray gene expression data. BioTechniques 33(4): 916–923.

    PubMed  CAS  Google Scholar 

  • Ullmannová V and Haškovec C (2003) The use of housekeeping genes (HKG) as an internal control for the detection of gene expression by quantitative real-time RT-PCR. Folia Biol 49: 211–216.

    Google Scholar 

  • Volkov RA, Panchuk I, and Schöffl F (2003) Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54: 2343–2349.

    Article  PubMed  CAS  Google Scholar 

  • Wei C, Jiangning L, and Bumgarner RE (2004) Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 5: 87.

    Article  PubMed  Google Scholar 

  • Wilson LA and Lowe SB (1973) The anatomy of the root system in West Indian sweetpotato (Ipomoea batatas (L.) Lam.) cultivars. Ann Bot 37: 633–643.

    Google Scholar 

  • Wong ML and Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39(1): 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Woolfe J (1992) Sweetpotato: an untapped food resource. Cambridge University Press, New York, NY.

    Google Scholar 

  • Yang YH, Buckley MJ, Dudoit S, and Speed TP (2002a) Comparison of methods for image analysis on cDNA microarray data. J Comput Graph Stat 11(1): 108–136.

    Article  Google Scholar 

  • Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed AI, White J, Li J, Lee NH, Yeatman TJ, and Quackenbush J (2002b) Within the fold: assessing differential expression measures and reproducibility in microarray assays. {jtGenome Biol} {vn3}({sn11}): research 0062.1–0062.12

  • Yang YH and Speed T (2002) Design issues for cDNA microarray experiments. Nat Rev 3: 579–588.

    CAS  Google Scholar 

  • Yuen T, Wurmbach E, Pfeffer R, Ebersole BJ, and Sealfon SC (2002) Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 30(10): e48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. McGregor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGregor, C.E., He, L., Ali, R.M. et al. The effect of replicate number and image analysis method on sweetpotato [Ipomoea batatas (L.) Lam.] cDNA microarray results. Plant Mol Biol Rep 23, 367–381 (2005). https://doi.org/10.1007/BF02788885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788885

Key words

Navigation