Skip to main content

Alginate Properties and Heavy Metal Biosorption by Marine Algae

Abstract

The physical properties of the alginate component in four different brown seaweeds (Sargassumfluitans, Ascophyllum nodosum, Fucus vesiculo-sus, andLaminaria japonica) were characterized using potentiometric titration,13C-nuclear magnetic resonance (NMR), chemical analysis, and viscosity measurements. The heavy metal binding capacities of the corresponding seaweeds were directly proportional to their respective total carboxyl group content, and related to the electronegativity of the elements investigated (Ca, Zn, Cd, Cu, and Pb). The uronic acid composition or sequence of the alginate component did not affect the metal uptake properties of the biosorbents studied here. However, the alginate leaching owing to its solubilization by Na ions was observed to decrease with increasing intrinsic viscosity of the extracted alginate, related to its molecular weight, and with increasing apparent acidic dissociation constant, related to the alginate density inside the biomass.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Gadd, G. M. (1988), inBiotechnology, vol. 6bSpecial Microbial Processes, Rehm, H.-J., ed. VCH Verlagsgesellschaft, Weinheim, Germany, pp. 401–433.

    Google Scholar 

  2. 2.

    Rachlin, J. W. and Grosso, A. (1993),Arch. Environ. Contant. Toxicol. 24, 16–20.

    Article  CAS  Google Scholar 

  3. 3.

    Strandberg, G. W., Shumate S. E., II, Parrott, J., Jr., and North, S. E. (1981), inEnvironmental Speciation and Monitoring Needs for Trace-Metal Containing Substances from Energy-Related Processes, Brinckman, F. E. and Fish, R. H., eds., U.S. Department of Commerce, National Bureau of Standards, Washington, DC., pp. 27–34.

    Google Scholar 

  4. 4.

    Volesky, B. and Holan, Z. R. (1995),Biotechnol. Prog. 11, 235–250.

    Article  CAS  Google Scholar 

  5. 5.

    Volesky, B., ed. (1990),Biosorption of Heavy Metals, CRC., Boca Raton, FL.

    Google Scholar 

  6. 6.

    Fourest, E. and Volesky, B. (1996),Environ. Sci. Technol. 30, 277–282.

    Article  CAS  Google Scholar 

  7. 7.

    Haug, A., Larsen, B., and Smidsrod, O. (1966),Acta Chem. Scand. 20, 183–190.

    CAS  Google Scholar 

  8. 8.

    Haug, A., Larsen, B., and Smidsrod, O. (1974),Carbohydr. Res. 32, 217–225.

    Article  CAS  Google Scholar 

  9. 9.

    Haug, A., Myklestad, S., Larsen, B., and Smidsrod, O. (1967),Acta Chem. Scand. 21, 768–773.

    CAS  Google Scholar 

  10. 10.

    Smidsrod, O. and Haug, A. (1972),Acta Chem. Scand. 26, 2063–2074.

    CAS  Google Scholar 

  11. 11.

    Thorn, D., Grant, G. T., Morris, E. R., and Rees, D. A. (1982),Carbohydr. Res. 100, 29–42.

    Article  Google Scholar 

  12. 12.

    Smidsrod, O. and Haug, A. (1965),Acta Chem. Scand. 19, 329–340.

    Article  Google Scholar 

  13. 13.

    Haug, A. and Smidsord, O. (1965),Acta Chem. Scand. 19, 341–351.

    CAS  Google Scholar 

  14. 14.

    de Carvalho, R. P., Chong, K.-H., and Volesky, B. (1994),Biotechnol. Lett. 46, 875–880.

    Article  Google Scholar 

  15. 15.

    Bullock, A. L. and Guthrie, J. D. (1965), inMethods in Carbohydrate Chemistry, 5, Whistler, R. L., BeMiller, J. N., and Wolfrom, M. L., eds., Academic, New York, NY, pp. 409–411.

    Google Scholar 

  16. 16.

    Chong, K. H. and Volesky, B. (1995),Biotechnol. Bioeng. 47, 451–460.

    Article  CAS  Google Scholar 

  17. 17.

    Leusch, A., Holan, Z. R., and Volesky, B. (1995),J. Chem. Technol. Biotechnol. 62, 279–288.

    Article  CAS  Google Scholar 

  18. 18.

    Fourest, E., Serre, A., and Roux, J.-C. (1996),Toxicol. Environ. Microbiol. 54, 1–4.

    CAS  Google Scholar 

  19. 19.

    Percival, E. and McDowell, R. H. (1967),Chemistry and Enzymology of Marine Algal Polysaccharides, Academic London, pp. 137–143.

    Google Scholar 

  20. 20.

    Kennedy, J. F. and Bradshaw, I. J. (1987),Carbohydr. Polymers 7, 35–50.

    Article  CAS  Google Scholar 

  21. 21.

    Haug, A. and Smidsrod, O. (1962),Acta Chem. Scand. 16, 1569–1578.

    CAS  Google Scholar 

  22. 22.

    Grasdalen, H., Larsen, B., and Smidsrod, O. (1981),Carbohydr. Res. 89, 179–191.

    Article  CAS  Google Scholar 

  23. 23.

    Helfferich, F. (1962),Ion Exchange, McGraw-Hill, NY.

    Google Scholar 

  24. 24.

    Lin, F. G. and Marinsky, J. A. (1993),React. Polymers 19, 27–45.

    Article  CAS  Google Scholar 

  25. 25.

    Kawarada, H., Hirai, A., Odani, H., Lida, T., and Nakajima, A. (1990),Polymer Bull. 24, 551–557.

    Article  CAS  Google Scholar 

  26. 26.

    Wang Z.-Y., Zhang, Q.-Z., Konno, M., and Saito, S. (1993),Biopolymers 33, 703–711.

    Article  CAS  Google Scholar 

  27. 27.

    Wang, Z.-Y., White, J. W., Konno, M., Saito, S., and Nozawa, T. (1995),Biopolymers 35, 227–238.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Eric Fourest or Bohumil Volesky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fourest, E., Volesky, B. Alginate Properties and Heavy Metal Biosorption by Marine Algae. Appl Biochem Biotechnol 67, 215–226 (1997). https://doi.org/10.1007/BF02788799

Download citation

Index Entries

  • Brown seaweed
  • biosorbent
  • biorecovery
  • cation exchanger
  • carboxyl groups
  • intrinsic viscosity
  • extraction
  • nuclear magnetic resonance