Skip to main content
Log in

The Weierstrass Hankel convolution transform

  • Published:
Journal d’Analyse Mathématique Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  1. F. M. Cholewinski, “A Hankel convolution complex inversion theory,”Memoirs Amer. Math. Soc., No. 58, 1965.

  2. A. Erdélyi et al.,Higher transcendental functions, vol. 2, New York, 1953.

  3. A. Erdélyi et al.,Tables of integral transforms, vols. 1 and 2, New York, 1954.

  4. D. T. Haimo, “Variation diminishing transformations,”Bull. Amer. Math. Soc., vol.70 (1964), pp. 271–274.

    MATH  MathSciNet  Google Scholar 

  5. D. T. Haimo, “Integral equations associated with Hankel convolutions,”Trans. Amer. Math. Soc., vol.116 (1965), pp. 330–375.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. I. Hirschman, Jr., “Variation diminishing Hankel Transforms,”J. d'Analyse Math.,8 (1960–1961) (pp. 307–336.

    Article  MathSciNet  Google Scholar 

  7. I. I. Hirschman, Jr. and D. V. Widder, The convolution transform, Princeton, 1955.

  8. A. Tychonoff, “Théorèmes d'unicité pour l'équations de la chaleur,”Matematiěeskii Sbornik, vol42 (1935), pp. 199–215.

    MATH  Google Scholar 

  9. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge, 1958.

  10. D. V. Widder, The Laplace transform, Princeton, 1941.

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Cholewinski, F.M., Haimo, D.T. The Weierstrass Hankel convolution transform. J. Anal. Math. 17, 1–58 (1966).

Download citation

  • Received:

  • Issue Date:

  • DOI: