Applied Biochemistry and Biotechnology

, Volume 53, Issue 2, pp 133–146 | Cite as

Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents

  • Z. R. Holan
  • B. Volesky


Native fungal biomass of fungiAbsidia orchidis, Penicillium chrysogenum, Rhizopus arrhizus, Rhizopus nigricans, and modified spruce sawdust (Picea engelmanii) sequestered metals in the following decreasing preference pb>Cd>Ni. The highest metal uptake was qmax = 351 mg Pb/gA. orchidis biomass. P.chrysogenum biomass could accumulate cadmium best at 56 mg Cd/g. The sorption of nickel was the weakest always at < 5 mg Ni/g. The spruce sawdust was modified by crosslinking, oxidation to acidic oxoforms, and by substitution. The highest metal uptake was observed in phosphorylated sawdust reaching qmax = 224 mg Pb/g, 56 mg Cd/g, and 26 mg Ni/g. The latter value is comparable to the value of nickel sorption by wet commercial resin Duolite GT-73. Some improvement in metal uptake was also observed after reinforcement of fungal biomass.

Index Entries

Biosorption cadmium lead, nickel fungal biomass Absidia orchidis Penicillium chrysogenum Rhizopus arrhizus Rhizopus nigricans sawdust sorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Volesky, B., ed. (1990),Biosorption of Heavy Metals, CRC, Boca Raton, FL.Google Scholar
  2. 2.
    Holan, Z. R., Volesky, B., and Prasetyo, I. (1993),Biotehnol. Bioeng. 41, 819–825.CrossRefGoogle Scholar
  3. 3.
    Holan, Z. R. and Volesky, B. (1994),Biotechnol. Bioeng. 43, 1001–1009.CrossRefGoogle Scholar
  4. 4.
    Volesky, B. (1990), inBiosorption of Heavy Metals, Volesky, B., ed. CRC, Boca Raton, FL, pp. 139–172.Google Scholar
  5. 5.
    Mueler, M. D., Wolf, D. C., Beveridge, T. J., and Bailey, G. W. (1992),Soil. Bio. Biochem. 24, 129–135.CrossRefGoogle Scholar
  6. 6.
    Huang, J. P., Huang, C. P., and Morehart, A. L. (1991),Trace Met. Environ. 1, 329–349.Google Scholar
  7. 7.
    Lewis, D. and Kiff, D. J. (1988),Environ. Technol. Lett. 9, 991–998.CrossRefGoogle Scholar
  8. 8.
    Zhou, J. L. and Kiff, D. J. (1991),J. Chem. Technol. Biotechnol. 52, 317–330.CrossRefGoogle Scholar
  9. 9.
    Fourest, E. and Roux, J.-C. (1992),Appl. Microbiol. Biotechnol. 37, 399–403.CrossRefGoogle Scholar
  10. 10.
    Luef, E., Prey, T., and Kubicek, C. P. (1991),Appl. Microbiol. Biotechnol. 34, 688–692.CrossRefGoogle Scholar
  11. 11.
    Niu, H., Xu, X. S., Wang, J. H., and Volesky, B. (1993),Biotechnol. Bioeng. 42, 785–787.CrossRefGoogle Scholar
  12. 12.
    DeRome, L. and Gadd, G. M. (1991),J. Ind. Microbiol. 7, 97–104.CrossRefGoogle Scholar
  13. 13.
    Azab, M. S., Peterson, P. J., and Yong, T. W. K. (1990),Microbios 62, 23–28.Google Scholar
  14. 14.
    Huang, J. P., Westman, J., Quirk, K., and Huang, C. P. (1988),Water Sci. Technol. 20, 369–376.Google Scholar
  15. 15.
    Brauckmann, B. M. (1990), inBiosorption of Heavy Metals, Volesky, B., ed. CRC, Boca Raton, FL, pp. 51–64.Google Scholar
  16. 16.
    Venkobachar, C. (1990),Water. Sci. Technol. 6, 319–320.Google Scholar
  17. 17.
    Aval, G. M. (1991),Iran J. Chem. Eng. 10, 21–23.Google Scholar
  18. 18.
    Chan, W. H., Lam-Leung, S. Y., Cheng, H. W., and Yip, Y. C. (1992),Anal. Lett. 25, 305–320.Google Scholar
  19. 19.
    Bryant, P. S., Petersen, J. N., Lee, J. M., and Brouns, T. M. (1992),Appl. Biochem. Biotechnol. 34/35, 778–788.Google Scholar
  20. 20.
    Svoboda, L., Uhlir, J., and Uhlir, Z. (1992),Collect. Czech Chem. Commun. 57, 1393–1404.CrossRefGoogle Scholar
  21. 21.
    Shukla, S. R. and Sakhardande, V. D. (1992),J. Appl. Polymer Sci. 44, 903–910.CrossRefGoogle Scholar
  22. 22.
    Khangan, V. W., Banker, D. B., and Dara, S. S. (1992),Chem. Environ. Res. 1, 87–94.Google Scholar
  23. 23.
    Shukla, N. and Pandey, G. S. (1990),Biol. Wastes 32, 145–148.CrossRefGoogle Scholar
  24. 24.
    Zhang, L., Hou, W., Zhang, L. and Zhang, B. (1990),Water Treat. 5, 87–94.Google Scholar
  25. 25.
    Wang, Y., Han, Q., Huang, Z. and Tang, Y. (1991),Water Treat 6, 339–342.Google Scholar
  26. 26.
    Treen-Sears, M. E., Martin, S. M., and Volesky, B. (1984),Appl. Envir. Microbiol. 48, 137–141.Google Scholar
  27. 27.
    Guthrie, J. D. and Bullock, A. L. (1960),Ind. Eng. Chem. 52, 935–937.CrossRefGoogle Scholar
  28. 28.
    Woo, H. K., Dusenbury, J. H., and Dillon, J. H. (1956),Textile Res. J. 26, 745–760.Google Scholar
  29. 29.
    Porath, J. and Axen, R. (1976), inMethods in Enzymology, vol.44, Mosbach, K. ed. Academic, New York, pp. 19–45.Google Scholar
  30. 30.
    Nevell, T. P. (1963), inMethods in Carbohydrate Chemistry, vol. 3, Whistler, R. L., Green, J. W., and BeMiller, J. N., eds. Academic, New York, pp. 164–185.Google Scholar
  31. 31.
    Guthrie, J. D. (1952),Ind. Eng. Chem. 44, 2187–2189.CrossRefGoogle Scholar
  32. 32.
    Skryabin, G. K. and Koshcheenko, K. A. (1987), inMethods in Enzymology,135, Mosbach, K., ed. Academic, New York, pp. 198–216.Google Scholar
  33. 33.
    Gai, Z., Gao, Z., Peng, B., and Yu, X. (1981),Yaoxue Xuebao 16, 342–348;Chem. Abstr. (1982),97, 90,333.Google Scholar
  34. 34.
    Tsuchihashi, H., Yadomae, T., and Miyazaki, T. (1983),Carbohydr. Res. 111, 330–335.CrossRefGoogle Scholar
  35. 35.
    Campos-Takaki, G. M., Beakes, G. W., and Dietrich, S. M. C. (1983),Trans. Br. Mycol. Soc. 80, 536–541.CrossRefGoogle Scholar
  36. 36.
    Yamada, H., Oshima, Y., and Miyazaki, T. (1982),Carbohydr. Res. 110, 113–126.CrossRefGoogle Scholar
  37. 37.
    Edwards, A. G. and Ho, C. S. (1988),Biotechnol. Bioeng. 32, 1–7.CrossRefGoogle Scholar
  38. 38.
    Grisaro, V., Chipman, D. M., Sharon, N., and Barkai-Golan, R. (1968),J. Gen. Microbiol. 51, 145–150.Google Scholar
  39. 39.
    Preston, J. F., Lapis, E., and Gander, J. E. (1969),Arch. Biochem. Biophys. 134, 324–334.CrossRefGoogle Scholar
  40. 40.
    Head, A. J., Kember, N. F., Miller, R. P., and Wells, R. A. (1959),J. Appl. Chem. 9, 599–608.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Z. R. Holan
    • 1
  • B. Volesky
    • 1
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations