Skip to main content
Log in

Raman spectroscopy and order in biological systems

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

The Raman spectra in the low 5–200 cm−1 frequency region of metabolically activeE. coli cells have been analyzed to determine whether they are indicators of a possible in vivo underlying order by applying standard concepts derived from the Raman spectroscopy of crystalline systems with varying degrees of order. The analysis suggests that in-vivo space-time ordered structures involving amino acids associated with DNA exist since the low frequency lines of metabolically active cells can be assigned to lines seen in the spectra of crystals of given amino acids known to associated with DNA early in the lifetime of a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webb, S. J. (1980),Phys. Rep. 60, 201.

    Article  CAS  Google Scholar 

  2. Drissler, F., and Santo, L. (1983), inCoherent Excitations in biological Systems (Fröhlich, H., and Kremer, F., eds.), Springer, Berlin, p. 6.

    Google Scholar 

  3. Del Giudice, E., Doglia, S., and Milani, M. (1982),Physica Scripta 26, 232.

    Article  Google Scholar 

  4. Del Giudice, E., Doglia, S., Milani, M., and Webb, S. J. (1982),Phys. Lett. 91A, 257.

    Google Scholar 

  5. Coisson, R., and Fontana, M. P. (1984), submitted for publication to Phys. Lett.

  6. Webb, S. J. (1976),Nutrition: Time and Motion in Metabolism and Genetics, C. C. Thomas Springfield, USA.

    Google Scholar 

  7. Scott, A. C. (1981),Phys. Lett. 85A, 60.

    Google Scholar 

  8. Lomdahl, P. S., MacNeil, L., Scott, A. C., Stoneham, M. E., and Webb, S. J. (1982),Phys. Lett. 92A, 207.

    CAS  Google Scholar 

  9. Simons, L., Bergstrom, G., Blomfelt, G., Forss, S., Stenback, H., and Wansén, G. (1972),Comment Phys.-Math. 42, 125.

    Google Scholar 

  10. Brown, K. G., Erfurth, S. C., Small, E. W., and Peticolas, W. L. (1972),Proc. Natl. Acad. Sci. USA 69, 1467.

    Article  PubMed  CAS  Google Scholar 

  11. Cardona, M., ed. (1975),Light Scattering in Solids, Springer Verlag, New York; Brodski, M. H., ed. (1979),Amorphous Semiconductors, Springer Verlag, New York; Mariotto, G., Fontana, A., Cazzanelli, E., and Fontana, M. P. (1980),Phys. Stat. Sol. B 101, 341; Quitett, A. M., Bell, M. I., Krauzman, M., and Raccah, P. J.,Phys. Rev. B,14, 5068.

    Google Scholar 

  12. Fröhlich, H. (1970),Nature 228, 1093; Fröhlich, H. (1980),Adv. Electron. Electron Phys. 53, 85.

    Article  PubMed  Google Scholar 

  13. Prigogine, I., and Nicolis, G. (1977), Self-Organization in Non Equilibrium Systems, inDissipative Structures to Order through Fluctuations, Wiley, New York.

    Google Scholar 

  14. Haken, H. (1977),Synergetics, Springer, Berlin.

    Google Scholar 

  15. Balis, M. E., Salsey, J. S., and Elder, A. (1964),Nature 203, 1170.

    Article  PubMed  CAS  Google Scholar 

  16. Salsev, S. J., and Balis, M. E. (1969),J. Biol. Chem. 244, 822.

    Google Scholar 

  17. Flamm, W. E., and Bionsteil, M. I. (1964), inThe Nucleohistones, Holden-Day, San Francisco.

    Google Scholar 

  18. Urabe, H., and Tominaga, Y. (1982),Biopolymers 21, 2477.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Giudice, E., Doglia, S., Milani, M. et al. Raman spectroscopy and order in biological systems. Cell Biophysics 6, 117–129 (1984). https://doi.org/10.1007/BF02788591

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788591

Index Entries

Navigation