Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Peroxidase-catalyzed polymerization and depolymerization of coal in organic solvents

  • 67 Accesses

  • 21 Citations


Peroxidases from horseradish roots (HRP) and soybean hulls (SBP) catalyze the efficient polymerization of a 4-kDa dimethylformamide (DMF)-soluble fraction of Mequininza (Spanish) lignite in 50% (v/v) DMF with an aqueous component consisting of acetate buffer, pH 5.0. Under these conditions, HRP and SBP catalyze the oxidation of free phenolic moieties in the coal matrix, thereby leading to oxidative polymerization of the low-molecular-weight coal polymers. The high fraction of nonphenolic aromatic moieties in coal inspired us to examine conditions whereby such coal components could also become oxidized. Oxidation of nonphenolic aromatic compounds was attempted using veratryl alcohol as a model substrate. SBP catalyzed the facile oxidation of veratryl alcohol at pH <3.HRP, however, was unable to elicit veratryl alcohol oxidation. The potential for SBP to catalyze interunit bond cleavage on complex polymeric substrates was examined using l-(3,4-dimethoxyphenyl)-2-(phenoxy)propan-1,3-diol (1) as a substrate. SBP catalyzed the Cα-Cβ and β-ether bond cleavage of this compound, suggesting that similar reactions on coal, itself, could lead to depolymerization. Depolymerization of a >50 Da coal fraction was achieved using SBP in 50% (v/v) DMF with an aqueous component adjusted to pH 2.2. Approximately 15% of the initial high-molecular-weight lignite fraction was depolymerized to polymers 4 Da in size. Hence, SBP is capable of catalyzing the depolymerization of coal in organic solvents, and this may have important ramifications in the generation of liquid fuels from coals.

This is a preview of subscription content, log in to check access.


  1. 1.

    Stock, L. M. (1985), inChemistry of Coal Conversion, Schlosberg, R. H. ed., Plenum, New York, pp. 253–316.

  2. 2.

    Speight, J. G. (1983),The Chemistry and Technology of Coal, Marcel Dekker, New York, pp. 215–240.

  3. 3.

    Cohen, N. S. and Gabriele, P. D. (1982),Appl. Environ. Microbiol. 44, 23–27.

  4. 4.

    Scott, C. D., Strandberg, G. W., and Lewis, S. N. (1986),Biotechnol. Prog. 2, 131–139.

  5. 5.

    Pyne, J. W., Jr., Stewart, D. L., Fredrickson, J., and Wilson, B. W. (1987),Appl. Environ. Microbiol. 53, 2844–2848.

  6. 6.

    Ward, B. (1985),System. Appl Microbiol. 6, 236–238.

  7. 7.

    Runnion, K. and Combie, J. D. (1990),Appl. Biochem. Biotechnol. 24/25, 817–829.

  8. 8.

    Dordick, J. S. (1989),Enzyme Microb. Technol. 11, 194–211.

  9. 9.

    Klibanov, A. M. (1990),Acc. Chem. Res. 23, 114–120.

  10. 10.

    Scott, C. D. and Lewis, S. N. (1988),Appl. Biochem. Biotechnol. 18, 403–412.

  11. 11.

    Wilson, B. W., Bean, R. W., Franz, J. A., Thomas, B. L., Cohen, M. S., Aronson, H., and Gray, E. T. (1987),Energy and Fuels 1, 80–84.

  12. 12.

    Dordick, J. S., Ryu, K., and McEldoon, J. P. (1991),Resources, Conservation and Recycling 5, 195–209.

  13. 13.

    Klyachko, N. L. and Klibanov, A. M. (1992),Appl. Biochem. Biotechnol. 37, 53–68.

  14. 14.

    Scott, C. D., Woodward, C. A., Thompson, J. E., and Blankinship, S. L. (1990),Appl. Biochem. Biotechnol. 24/25, 799–815.

  15. 15.

    Kirk, T. K., Brown, W., and Cowling, E. B. (1969),Biopolymers 7, 135–153.

  16. 16.

    Yamazaki, I. and Piette, L. H. (1963),Biochim. Biophys. Ada 77, 47–64.

  17. 17.

    Hayatsu, R., Winans, R. E., McBeth, R. L., Scott, R. G., Moore, L. P., and Studier, M. H. (1981), inCoal Structure, vol. 192 ofAdvances in Chemistry Series, Gorbaty, M. L. and Ouchi, K., eds., American Chemical Society, Washington, DC, pp. 133–149.

  18. 18.

    Blinkovsky, A. M. and Dordick, J. S. (1993),J. Polym. Sci.: Part A: Polym. Chem. 31, 1839–1846.

  19. 19.

    Tien, M. and Kirk, T. K. (1983),Science 221, 661–663.

  20. 20.

    Ryu, K. and Dordick, J. S. (1992),Biochemistry 31, 2588–2598.

  21. 21.

    Tien, M. and Kirk, T. K. (1984),Proc. Natl. Acad. Sci. USA 81, 2280–2284.

  22. 22.

    Waters, W. A. and Littler, J. S. (1965), inOxidation in Organic Chemistry, vol. 5a, Wiberg, K. B., ed., Academic, New York, pp. 185–241.

  23. 23.

    Haschke, R. H. and Freidhoff, J. M. (1978),Biochem. Biophys. Res. Commun. 80, 1039–1042.

  24. 24.

    McEldoon, J. P. and Dordick, J. S. (1991),J. Biol. Chem. 266, 14288–14293.

  25. 25.

    Aitken, M. D., Vajagopalan, R., and Irvine, R. L. (1989),Water Res. 23, 443–450.

Download references

Author information

Correspondence to Jonathan S. Dordick.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blinkovsky, A.M., McEldoon, J.P., Arnold, J.M. et al. Peroxidase-catalyzed polymerization and depolymerization of coal in organic solvents. Appl Biochem Biotechnol 49, 153–164 (1994). https://doi.org/10.1007/BF02788549

Download citation

Index entries

  • Peroxidase from soybean hulls
  • coal depolymerization
  • enzymatic oxidation of veratryl alcohol