Applied Biochemistry and Biotechnology

, Volume 49, Issue 2, pp 153–164 | Cite as

Peroxidase-catalyzed polymerization and depolymerization of coal in organic solvents

  • Alexander M. Blinkovsky
  • James P. McEldoon
  • John M. Arnold
  • Jonathan S. Dordick


Peroxidases from horseradish roots (HRP) and soybean hulls (SBP) catalyze the efficient polymerization of a 4-kDa dimethylformamide (DMF)-soluble fraction of Mequininza (Spanish) lignite in 50% (v/v) DMF with an aqueous component consisting of acetate buffer, pH 5.0. Under these conditions, HRP and SBP catalyze the oxidation of free phenolic moieties in the coal matrix, thereby leading to oxidative polymerization of the low-molecular-weight coal polymers. The high fraction of nonphenolic aromatic moieties in coal inspired us to examine conditions whereby such coal components could also become oxidized. Oxidation of nonphenolic aromatic compounds was attempted using veratryl alcohol as a model substrate. SBP catalyzed the facile oxidation of veratryl alcohol at pH <3.HRP, however, was unable to elicit veratryl alcohol oxidation. The potential for SBP to catalyze interunit bond cleavage on complex polymeric substrates was examined using l-(3,4-dimethoxyphenyl)-2-(phenoxy)propan-1,3-diol (1) as a substrate. SBP catalyzed the Cα-Cβ and β-ether bond cleavage of this compound, suggesting that similar reactions on coal, itself, could lead to depolymerization. Depolymerization of a >50 Da coal fraction was achieved using SBP in 50% (v/v) DMF with an aqueous component adjusted to pH 2.2. Approximately 15% of the initial high-molecular-weight lignite fraction was depolymerized to polymers 4 Da in size. Hence, SBP is capable of catalyzing the depolymerization of coal in organic solvents, and this may have important ramifications in the generation of liquid fuels from coals.

Index entries

Peroxidase from soybean hulls coal depolymerization enzymatic oxidation of veratryl alcohol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stock, L. M. (1985), inChemistry of Coal Conversion, Schlosberg, R. H. ed., Plenum, New York, pp. 253–316.Google Scholar
  2. 2.
    Speight, J. G. (1983),The Chemistry and Technology of Coal, Marcel Dekker, New York, pp. 215–240.Google Scholar
  3. 3.
    Cohen, N. S. and Gabriele, P. D. (1982),Appl. Environ. Microbiol. 44, 23–27.Google Scholar
  4. 4.
    Scott, C. D., Strandberg, G. W., and Lewis, S. N. (1986),Biotechnol. Prog. 2, 131–139.CrossRefGoogle Scholar
  5. 5.
    Pyne, J. W., Jr., Stewart, D. L., Fredrickson, J., and Wilson, B. W. (1987),Appl. Environ. Microbiol. 53, 2844–2848.Google Scholar
  6. 6.
    Ward, B. (1985),System. Appl Microbiol. 6, 236–238.Google Scholar
  7. 7.
    Runnion, K. and Combie, J. D. (1990),Appl. Biochem. Biotechnol. 24/25, 817–829.Google Scholar
  8. 8.
    Dordick, J. S. (1989),Enzyme Microb. Technol. 11, 194–211.CrossRefGoogle Scholar
  9. 9.
    Klibanov, A. M. (1990),Acc. Chem. Res. 23, 114–120.CrossRefGoogle Scholar
  10. 10.
    Scott, C. D. and Lewis, S. N. (1988),Appl. Biochem. Biotechnol. 18, 403–412.Google Scholar
  11. 11.
    Wilson, B. W., Bean, R. W., Franz, J. A., Thomas, B. L., Cohen, M. S., Aronson, H., and Gray, E. T. (1987),Energy and Fuels 1, 80–84.CrossRefGoogle Scholar
  12. 12.
    Dordick, J. S., Ryu, K., and McEldoon, J. P. (1991),Resources, Conservation and Recycling 5, 195–209.CrossRefGoogle Scholar
  13. 13.
    Klyachko, N. L. and Klibanov, A. M. (1992),Appl. Biochem. Biotechnol. 37, 53–68.Google Scholar
  14. 14.
    Scott, C. D., Woodward, C. A., Thompson, J. E., and Blankinship, S. L. (1990),Appl. Biochem. Biotechnol. 24/25, 799–815.Google Scholar
  15. 15.
    Kirk, T. K., Brown, W., and Cowling, E. B. (1969),Biopolymers 7, 135–153.CrossRefGoogle Scholar
  16. 16.
    Yamazaki, I. and Piette, L. H. (1963),Biochim. Biophys. Ada 77, 47–64.CrossRefGoogle Scholar
  17. 17.
    Hayatsu, R., Winans, R. E., McBeth, R. L., Scott, R. G., Moore, L. P., and Studier, M. H. (1981), inCoal Structure, vol. 192 ofAdvances in Chemistry Series, Gorbaty, M. L. and Ouchi, K., eds., American Chemical Society, Washington, DC, pp. 133–149.Google Scholar
  18. 18.
    Blinkovsky, A. M. and Dordick, J. S. (1993),J. Polym. Sci.: Part A: Polym. Chem. 31, 1839–1846.CrossRefGoogle Scholar
  19. 19.
    Tien, M. and Kirk, T. K. (1983),Science 221, 661–663.CrossRefGoogle Scholar
  20. 20.
    Ryu, K. and Dordick, J. S. (1992),Biochemistry 31, 2588–2598.CrossRefGoogle Scholar
  21. 21.
    Tien, M. and Kirk, T. K. (1984),Proc. Natl. Acad. Sci. USA 81, 2280–2284.CrossRefGoogle Scholar
  22. 22.
    Waters, W. A. and Littler, J. S. (1965), inOxidation in Organic Chemistry, vol. 5a, Wiberg, K. B., ed., Academic, New York, pp. 185–241.Google Scholar
  23. 23.
    Haschke, R. H. and Freidhoff, J. M. (1978),Biochem. Biophys. Res. Commun. 80, 1039–1042.CrossRefGoogle Scholar
  24. 24.
    McEldoon, J. P. and Dordick, J. S. (1991),J. Biol. Chem. 266, 14288–14293.Google Scholar
  25. 25.
    Aitken, M. D., Vajagopalan, R., and Irvine, R. L. (1989),Water Res. 23, 443–450.CrossRefGoogle Scholar

Copyright information

© Human Press Inc 1994

Authors and Affiliations

  • Alexander M. Blinkovsky
    • 1
  • James P. McEldoon
    • 1
  • John M. Arnold
    • 1
  • Jonathan S. Dordick
    • 1
  1. 1.Department of Chemical and Biochemical Engineering and Center for Biocatalysis and BioprocessingUniversity of IowaIowa City

Personalised recommendations