Advertisement

Lithology and Mineral Resources

, Volume 35, Issue 1, pp 32–46 | Cite as

Some features of the evolution of carbonate accumulation in the earth’s history: Communication 1. Evolution of the intensity, mechanism, and setting of carbonate accumulation

  • V. G. Kuznetsov
Article

Abstract

Marine and oceanic carbonate accumulation during the Vendian-Cambrian was mostly controlled by the life activity of organisms, which either constructed skeletons and directly transferred carbonates into sediments or created geochemical environments favorable for the precipitation of the carbonate substance. During the first third of the Paleozoic, the chemogenic and biochemogenic mechanisms of limestone formation were replaced by the biogenic one. In the dolomite formation, to the contrary, the chemogenic mechanism progressively replaced the biochemogenic mechanism and its pseudobiogenic modification. The carbonate accumulation occurred in the cyclic mode and its intensity increased with time to reach its peak in the Late Cretaceous. The main paleogeographic domains of carbonate accumulation also experienced changes. They were mainly represented by spacious shelf seas in the Paleozoic; by intraoceanic shoals, reefs and pelagic realm in the Mesozoic; and by the pelagic realm and, to a lesser extent, reefs in the main Cenozoic.

Keywords

Dolomite Devonian Cambrian Carbonate Rock Stromatolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahr, W.M., The Carbonate Ramp—An Alternative to the Shelf Model,Trans. Gulf Coast Assoc. Soc., 1973, vol. 32, pp. 221–225.Google Scholar
  2. Alekin, O.A. and Lyakhin, Yu.I., The Problem of Causes of the Sea Water Oversaturation with Calcium Carbonate,Dokl. Akad. Nauk SSSR, 1968, vol. 178, no. 1, pp. 191–194.Google Scholar
  3. Alekin, O.A. and Lyakhin, Yu.I.,Khimiya okeana (Chemistry of the Ocean), Leningrad: Gidrometeoizdat, 1984.Google Scholar
  4. Aref, M.A.M., Holocene Stromatolites and Microbial Laminites Associated with Lenticular Gypsum in a Marine-Dominated Environment, Ras El Shetan Area, Gulf of Aqaba, Egypt,Sedimentology, 1998, vol. 45, no. 2, pp. 245–262.CrossRefGoogle Scholar
  5. Bakri, D., Kling, S.A., Banheim, F.T., and Horn, M.K., Geological Significance of Coccolites in Fine-Grained Carbonate Layers of the Postglacial Sediments in the Black Sea,Litol. Polezn. Iskop., 1970, no. 6, pp. 3–7.Google Scholar
  6. Bandel, K., Deep-Water Limestones from the Devonian Carboniferous of the Carnic Alps, Austria,Pelagic Sediments on Land and under the Sea, IAS Spec. Publ., 1974, no. 1, pp. 93–115.Google Scholar
  7. Bezborodova, I.V., Facies Types of Different-Age Dolomites,Evolyutsiya karbonatonakopleniya v istorii Zemli (Evolution of the Carbonate Accumulation in the Earth’s History), Moscow: Nauka, 1988, pp. 35–57.Google Scholar
  8. Bosellini, A., Progradation Geometry of Carbonate Platforms: Examples from the Triassic of the Dolomites, Northern Italy,Sedimentology, 1984, vol. 31, pp. 1–24.CrossRefGoogle Scholar
  9. Bosellini, A., Dynamics of Tethyan Carbonate Platforms,Controls on Carbonate Platform and Basin Development, SEPM Sp. Publ., Tulsa, 1989, no. 44, pp. 3–13.Google Scholar
  10. Bosellini, A. and Winterer, E.L., Pelagic Limestone and Radiolarite of the Tethyan Mesozoic: A Genetic Model,Geology, 1975, vol. 3, pp. 279–282.CrossRefGoogle Scholar
  11. Burchette, T.P. and Wright, V.P., Carbonate Ramp Depositional Systems,Sediment. Geol., 1992, vol. 79, pp. 3–57.CrossRefGoogle Scholar
  12. Camoin, G.F., Arnaud-Vanneau, A., Bergersen, D.D., Enos, P., and Ebven, Ph., Development and Demise of Mid-Oceanic Carbonate Platforms, Wodejebato Guyot (NW Pacific),Reefs and Carbonate Platforms in the Pacific and Indian Ocean, IAS Spec. Publ., 1998, no. 25, pp. 39–67.Google Scholar
  13. Chilingar, G.V., Relationship between Ca/Mg Ratio and Geological Age,Am. Assoc. Petrol. Geol. Bull., 1956, vol. 40, pp. 2256–2266.Google Scholar
  14. Clari, P.A. and Martire, L., Interplay of Sedimentation, Mechanical Compaction, and Chemical Compaction in Nodular Limestones of the Rosso Ammonitico Veronese (Middle-Upper Jurassic, Northeastern Italy),J. Sed. Res., Section A, 1996, vol. 66, no. 3, pp. 447–458.Google Scholar
  15. Concepts and Models of Dolomitization, SEPM Spec. Rubl., 1980, no. 28.Google Scholar
  16. Controls on Carbonate Platforms and Basin Development, SEPM Spec. Publ., 1989, no. 44.Google Scholar
  17. Daly, R., First Calcareous Fossils and Evolution of Limestones,Bull. Geol. Soc. Am., 1909, vol. 20, pp. 2517–2527.Google Scholar
  18. Davydov, Yu.V.,Rifeiskie karbonatnye otlozheniya yugovostoka Sibirskoi platformy i ee obramleniya (Riphean Carbonate Deposits of the Southeastern Siberian Platform and Its Periphery), Novosibirsk: Nauka, 1975.Google Scholar
  19. Dolomitization and Limestone Diagenesis: A Symposium, SEPM Spec. Publ., 1965.Google Scholar
  20. Drzewiecki, P.A. and Simo, J.A., Carbonate Platform Drowning and Oceanic Anoxic Event on a Mid-Cretaceous Carbonate Platform, South Central Pyrenees, Spain,J. Sed. Res., Section B, 1997, vol. 67, no. 4, pp. 698–714.Google Scholar
  21. Emel’yanov, E.M.,Sedimentogenez v basseine Atlanticheskogo okeana (Sedimentogenesis in the Atlantic Ocean Basin), Moscow: Nauka, 1982.Google Scholar
  22. Emel’yanov, E.M., Trimonis, E.S., and Kharin, G.S.,Paleookeanologiya Atlanticheskogo okeana (Paleoceanology of the Atlantic Ocean), Moscow: Nedra, 1989.Google Scholar
  23. Foellmi, K.B.,Evolution of the Mid-Cretaceous Triad, Lectures Notes in Earth Sciences, Heidelberg: Springer, 1989, vol. 23.Google Scholar
  24. Frakes, L.A. and Francis, J.E., A Guide to Phanerozoic Cold Polar Climates from High-Latitude Ice-Rafting in the Cretaceous,Nature (London), 1988, vol. 333, pp. 547–549.CrossRefGoogle Scholar
  25. Friedman, G.M., Amel, A.G., Braun, M., and Miller, D.S., Generation of Carbonate Particles and Laminites in Algal Mats—Example from Sea-Marginal Hypersaline Pool, Gulf of Aqaba, Red Sea,Am. Assoc. Petrol. Geol. Bull., 1973, vol. 57, no. 3, pp. 541–557.Google Scholar
  26. Gebelein, C.O. and Hoffman, P., Algal Origin Laminations in Stromatolitic Limestones,J. Sed. Petrol., 1979, vol. 43, no. 3, pp. 602–613.Google Scholar
  27. Groetsch, J. and Fluegel, E., Facies Sunken Early Cretaceous Atoll Reefs and Their Capping Late Albian Drowning Succession (Northwestern Pacific),Facies, 1992, vol. 27, pp. 153–174.CrossRefGoogle Scholar
  28. Groetsch, I., Schroeder, R., Noe, S., and Fluegel, E., Carbonate Platforms as Recorders of High-Amplitude Eustatic Sea Level Fluctuations: The Late Albian Appenninica Event,Basin Res., 1993, vol. 5, pp. 197–212.CrossRefGoogle Scholar
  29. Hardie, L.A., Dolomitization: A Critical View of Some Current Views,J. Sed. Petrol., 1987, vol. 57, pp. 166–183.Google Scholar
  30. Heezen, B.C., Matthews, J.L., Catalano, R., Natland, J., Coogan, A., Tharp, M., and Rawson, M., Western Pacific Gyots,Proc. Ocean Drill. Program: Init. Rep., Leg XX, 1973, vol. 20, pp. 653–725.Google Scholar
  31. Jenkyns, H., Origin of Red Nodular Limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: A Diagenetic Model,Pelagic Sediments on Land and under the Sea, IAS Spec. Publ., 1974, no. 1, pp. 249–271.Google Scholar
  32. Kazmierczak, J., Coleman, M.L., Gruszczynski, M., and Kempe, S., Cyanobacterial Key to the Genesis of Micritic and Pelodial Limestones in Ancient Seas,Acta Paleont. Polonica, 1996, vol. 41, pp. 319–338.Google Scholar
  33. Khabarov, E.M.,Sravnitel’naya kharakteristika pozdnedokembriiskikh rifogennykh formatsii (Comparative Characteristics of Late Precambrian Reefogenic Formations), Novosibirsk: Nauka, 1985.Google Scholar
  34. Kholodov, V.N., Problems of the Dolomite Formation in the Present Level of the Lithology Development,Evolyutsiya karbonatonakopleniya v istorii Zemli (Evolution of the Carbonate Accumulation in the Earth’s History), Moscow: Nauka, 1988, pp. 3–23.Google Scholar
  35. Kinsman, D.J.J., Interpretation of Sr2+ Concentrations in Carbonate Minerals and Rocks,J. Sed. Petrol., 1969, vol. 39, no. 2, pp. 486–508.Google Scholar
  36. Koch, R., Ogorelec, B., and Orehek, S., Microfacies and Diagenesis of Lower and Middle Cretaceous Carbonate Rocks of NW Yugoslavia (Slovenien, Trnovo),Facies, 1989, vol. 21, pp. 135–170.CrossRefGoogle Scholar
  37. Korolyuk, I.K., Dolomite Rocks of the Cambrian Lenan Stage in the Irkutsk Amphitheater,Tipy dolomitovykh porod i ikh genezisa (Types of Dolomite Rocks and Their Genesis), Moscow: Akad. Nauk SSSR, 1956, pp. 51–74.Google Scholar
  38. Kuznetsov, V.G., Cyclicity of Deposits in Different Climatic and Tectonic Regions,Izv. Akad. Nauk SSSR, Ser. Geol., 1987, no. 3, pp. 69–82.Google Scholar
  39. Kuznetsov, V.G., Paleozoic Carbonate Sedimentation in the Caspian Basin and Its Surroundings,Litol. Polezn. Iskop., 1998, no. 5, pp. 494–503.Google Scholar
  40. Kuznetsov, V.G. and Kurze, M., Cyclicity of Carbonate Deposits in Different Climatic and Tectonic Regions,Geol. Geofiz., 1985, no. 9, pp. 21–28.Google Scholar
  41. Larson, R.L., Erba, E., Nakanishi, M., Bergersen, D.D., and Lincoln, J.M., Stratigraphic, Vertical Subsidence, and Paleolatitude Histories of Leg 144 Guyots,Proc. Ocean Drill. Program: Sci. Results, 1995, vol. 144, pp. 915–933.Google Scholar
  42. Lisitsin, A.P.,Protsessy okeanskoi sedimentatsii (Processes of Oceanic Sedimentation), Moscow: Nauka, 1978.Google Scholar
  43. Luchinina, V.A.,Epiphyton Born.: A Typical Representative of Calcibionta (Group of Extinct Calcareous Algae),Kembrii Sibiri i Srednei Azii (Cambrian of Siberia and Central Asia), Moscow: Nauka, 1988, pp. 126–132.Google Scholar
  44. Luchinina, V.A., Calcibionta: Calcareous Algae of the Vendian-Phanerozoic,DSc (Geol.-Miner.) Dissertation, Novosibirsk: Nauka, 1990.Google Scholar
  45. Milliman, J.D., Mueller, G., and Foerster, U.,Recent Sedimentary Carbonates, Part 1: Marine Carbonates, Berlin: Springer, 1974.Google Scholar
  46. Patrunov, D.K., Recent Carbonate Formation, inObshchaya geologiya (General Geology), Moscow: VINITI, 1976, vol. 7.Google Scholar
  47. Patrunov, D.K., Dolomites and Dolomitization, inObshchaya geologiya (General Geology), Moscow: VINITI, 1983, vol. 17.Google Scholar
  48. Patrunov, D.K., The Jurassic Red Nodular Limestones with Ammonites (Ammonitico-rosso Facies) from the East Carpathian to the Western Central Atlantic,Evolyutsiya karbonatonakopleniya v istorii Zemli (Evolution of Carbonate Accumulation in the Earth’s History), Moscow: Nauka, 1998, pp. 95–113.Google Scholar
  49. Pelagic Sediments on Land and under the Sea, IAS Spec. Publ., 1974, no. 1.Google Scholar
  50. Peryt, T.M., Sedimentology of Badenian (Middle Miocene) Gypsum in Eastern Galicia, Podolia and Bukovina (West Ukraine),Sedimentology, 1996, vol. 43, no. 3, pp. 571–588.CrossRefGoogle Scholar
  51. Peryt, T.M., Sedimentary and Diagenetic Carbonate-Evaporite Transitions in the Middle Miocene Badenian of West Ukraine,15th Int. Sedimentological Congr., Alicante-1998, pp. 618–619.Google Scholar
  52. Purdy, E.G. and Bertram, G.T., Carbonate Concepts from the Maldvies, Indian Ocean,Am. Assoc. Petrol. Geol., Studies in Geology, 1993, vol. 34.Google Scholar
  53. Pustovalov, L.V.,Petrografiya osadochnykh porod (Petrography of Sedimentary Rocks), Moscow: Gostoptekhizdat, 1940, vol. 1.Google Scholar
  54. Radionova, E.P., Microphytolites and Other Problematic Formations of the Paleozoic in Several Regions of the Russian and Siberian Platforms,Vodorosli i mikrofitolity paleozoya (Algae and Microphytolites of the Paleozoic), Moscow: Nauka, 1976, pp. 86–164.Google Scholar
  55. Ronov, A.B.,Osadochnaya obolochka Zemli: kolichestvennye zakonomernosti stroeniya, sostava i evolyutsii (Sedimentary Cover of the Earth: Quantitative Regularities of the Structure, Composition, and Evolution), Moscow: Nauka, 1980.Google Scholar
  56. Ronov, A.B.,Stratisfera, ili osadochnaya obolochka Zemli (kolichestvennoe issledovanie) (Stratisphere, or Sedimentary Cover of the Earth: Quantitative Study), Moscow: Nauka, 1993.Google Scholar
  57. Ronov, A.B., Khain, V.E., and Seslavinskii, K.B.,Atlas litologo-paleogeograficheskikh kart mira (Atlas of Lithological and Paleogeographic Maps of the World), vol. 1: Late Precambrian and Paleozoic of Continents, Leningrad: Nauka, 1984.Google Scholar
  58. Ronov, A.B., Yaroshevskii, A.A., and Migdisov, A.A.,Khimicheskoe stroenie zemnoi kory i geokhimicheskii balans glavnykh elementov (Chemical Structure of the Earth’s Crust and the Geochemical Balance of Chief Elements), Moscow: Nauka, 1990.Google Scholar
  59. Rucholz, K., Ein oberdevonisches Kalkvorkommen am Stolborn suedoestlich Benneckenstein (Harz) als Beispiel einer extremen stratigraphischen Kondensation,Geologie, 1963, vol. 12, no. 9, pp. 1039–1047.Google Scholar
  60. Schlager, W.,Sedimentology and Sequence Stratigraphy of Reefs and Carbonate Platforms, Am. Assoc. Petrol. Geol., Continuing Education Course Note Series, 1992, no. 34, p. 71.Google Scholar
  61. Schlager, W. and Ginsburg, R.N., Bahama Carbonate Platforms—the Deep and the Past,Mar. Geol., 1981, vol. 44, pp. 1–24.CrossRefGoogle Scholar
  62. Sedimentary Environments: Processes, Facies, and Stratigraphy, Oxford: Blackwell, 1996, 3rd ed.Google Scholar
  63. Sedimentolgy and Geochemistry of Dolostones, SEPM Spec. Publ., 1988, no. 43.Google Scholar
  64. Shiba, M., Middle Cretaceous Carbonate Bank on the Daiichi-Kashima Seamount at the Junction of the Japan and Izu-Bonin Trenches,Cretaceous Carbonate Platforms, Am. Assoc. Petrol. Geol. Memoir 56, 1993, pp. 465–471.Google Scholar
  65. Smith, S.V., Coral Reef and the Contributions of Reef to Processes and Resources of the World’s Ocean,Nature (London), 1978, vol. 273, no. 5659, pp. 225–236.CrossRefGoogle Scholar
  66. Stieglitz, R.D., Scanning Electron Microscopy of the Fine Fraction of Recent Carbonate Sediments from Bimini, Bahamas,J. Sed. Petrol., 1972, vol. 42, no. 1, pp. 211–226.Google Scholar
  67. Strakhov, N.M.,Izvestkovo-dolomitovye fatsii sovremennykh i drevnikh vodoemov (Limestone-Dolomite Facies of Recent and Ancient Water Basins), Moscow: Akad. Nauk SSSR, 1951.Google Scholar
  68. Timofeev, P.P. and Kholodov, V.N., Evolution of Sedimentation Basins in the Earth’s History,Izv. Akad. Nauk SSSR, Ser. Geol., 1984, no. 7, pp. 10–34.Google Scholar
  69. Trimonis, E.S., Some Features of the Recent Carbonate Accumulation in the Black Sea,Okeanologiya, 1973, no. 5, pp. 821–828.Google Scholar
  70. Tucker, M., Sedimentology and Diagenesis of Devonian Pelagic Limestones (Cephalopodenkalk) and Associated Sediments of the Rhenohercynian Geosyncline, West Germany,Neues Jahrbuch für Geologie und Palaeontologie, Abhandlungen, 1973, vol. 142, no. 3, pp. 320–350.Google Scholar
  71. Tucker, M., Sedimentology of Paleozoic Pelagic Limestones: The Devonian Griotte (Southern France) and Cephalopodenkalk (Germany),Pelagic Sediments on Land and under the Sea, IAS Spec. Publ., 1974, pp. 71–92.Google Scholar
  72. Tucker, M. and Kendal, A.C., The Diagenesis and Low-Grade Metamorphism of Devonian Styliolinid-Rich Pelagic Carbonates from West Germany: Possible Analogues of Recent Pteropod Oozes,J. Sed. Petrol., 1973, vol. 43, no. 3, pp. 672–687.Google Scholar
  73. Tucker, M.E. and Wright, V.P.,Carbonate Sedimentology, Oxford: Blackwell, 1990.Google Scholar
  74. Turchinov, I.I., Sedimentary Structures in the Middle Miocene Badenian Gypsum in the Western Podolia (West Ukraine),15th Int. Sedimentological Congr., Alicante, 1998.Google Scholar
  75. Vera, J.A., Molina, J.M., Montero, P., and Bea, F., Jurassic Guyots on the Southern Iberian Continental Margin: A Model of Isolated Carbonate Platforms on Volcanic Submarine Edifices,Terra Nova, 1997, vol. 9, no. 4, pp. 163–166.CrossRefGoogle Scholar
  76. Vinogradov, A.P., Ronov, A.B., and Ratynskii, V.M., Evolution of Chemical Composition of Carbonate Rocks,Soveshchanie po osadochnym porodam. Doklady (Conf. on Sedimentary Rocks: Reports), Moscow: Akad. Nauk SSSR, 1952, no. 1, pp. 104–123.Google Scholar
  77. Volodina, O.M., Lithological Types of Upper Devonian Carbonate Rocks of the Sarysu-Teniz Uplift and Their Manganese Potential,Margantsevoe rudoobrazovanie na territorii SSSR (Manganese Ore Formation on the Territory of the Soviet Union), Moscow: Nauka, 1984, pp. 142–148.Google Scholar
  78. Von der Borch and Lock, D., Geological Significance of Coorong Dolomites,Sedimentology, 1979, vol. 26, no. 6, pp. 913–924.CrossRefGoogle Scholar
  79. Voznesenskaya, T.A., Facies of Pelagic Limestones in the Carboniferous of the Southwestern Darvaz,Litol. Polezn. Iskop., 1979, no. 6, pp. 119–126.Google Scholar
  80. Wald, S., Kurze, M., and Wienholz, R., Ausbildung und Genese oberdevonischer Kalkknollengesteine im Sueden der DDR,Zeitschrift Geol. Wiss., 1983, vol. 11, no. 1, pp. 27–39.Google Scholar
  81. Wells, A.J. and Illing, L.V., Present-Day Precipitation of Calcium Carbonate in the Persian Gulf,Deltaic and Shallow Marine Deposits, Amsterdam: Elsevier, 1964, pp. 429–435.Google Scholar
  82. Wilson, J.L.,Carbonate Facies in Geologic History, Berlin: Springer, 1980. Translated under the titleKarbonatnye fatsii v geologicheskoi istorii, Moscow: Nedra, 1980.Google Scholar
  83. Winterer, E.L. and Sager, W.W., Synthesis of Drilling Results from the Mid-Pacific Mountains: Regional Context and Implications,Proc. Ocean Drill. Program: Sci. Results, 1995, vol. 143, pp. 535–597.Google Scholar

Copyright information

© MAIK “Nauke/Interperiodica” 2000

Authors and Affiliations

  • V. G. Kuznetsov
    • 1
  1. 1.Institute of Oil and Gas ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations