Skip to main content
Log in

On the existence of invariant probability measures

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let (X,A) be a measureable space andT:XX a measurable mapping. Consider a family ℳ of probability measures onA which satisfies certain closure conditions. IfA 0A is a convergence class for ℳ such that, for everyAA 0, the sequence ((1/n) Σ =0/n−1 i 1 A T i) converges in distribution (with respect to some probability measurev ∈ ℳ), then there exists aT-invariant element in ℳ. In particular, for the special case of a topological spaceX and a continuous mappingT, sufficient conditions for the existence ofT-invariant Borel probability measures with additional regularity properties are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Adamski,Tight set functions and essential measure, Lecture Notes in Math., Vol. 945, Springer-Verlag, Berlin, Heidelberg and New York, 1982, pp. 1–14.

    Google Scholar 

  2. W. Adamski,Some characterizations of Daniell lattices, Arch. Math.40 (1983), 339–345.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Adamski, P. Gänßler and S. Kaiser,On compactness and convergence in spaces of measures, Math. Ann.220 (1976), 193–210.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. D. Alexandroff,Additive set-functions in abstract spaces. Mat. Sbornik (N.S.)13 (1943), 169–238.

    MathSciNet  Google Scholar 

  5. H. Bauer,Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, De Gruyter, Berlin and New York, 1978.

    MATH  Google Scholar 

  6. P. Billingsley,Convergence of Probability Measures, Wiley, New York, 1968.

    MATH  Google Scholar 

  7. Y. S. Chow and H. Teicher,Probability Theory, Springer-Verlag, New York, Heidelberg and Berlin, 1978.

    MATH  Google Scholar 

  8. N. Dunford and J. T. Schwartz,Linear Operators, Part I, Interscience Publishers, New York, 1958.

    MATH  Google Scholar 

  9. C. Goffman and G. Pedrick,First Course in Functional Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1965.

    MATH  Google Scholar 

  10. J. C. Oxtoby and S. M. Ulam,On the existence of a measure invariant under a transformation, Ann. of Math.40 (1939), 560–566.

    Article  MathSciNet  Google Scholar 

  11. F. Topsoe,Compactness in spaces of measures, Studia Math.36 (1970), 195–212.

    MathSciNet  Google Scholar 

  12. V. S. Varadarajan,Measures on topological spaces, Am. Math. Soc. Transl. (2)48 (1965), 161–228.

    Google Scholar 

  13. P. Walters,An Introduction to Ergodic Theory, Springer-Verlag, New York, Heidelberg and Berlin, 1982.

    MATH  Google Scholar 

  14. F. B. Wright,The converse of the individual ergodic theorem, Proc. Am. Math. Soc.11 (1960), 415–420.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamski, W. On the existence of invariant probability measures. Israel J. Math. 65, 79–95 (1989). https://doi.org/10.1007/BF02788175

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788175

Keywords

Navigation