Skip to main content
Log in

Fat sets and pointwise boundary estimates forp-harmonic functions in metric spaces

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We extend a result of John Lewis [L] by showing that if a doubling metric measure space supports a (1,q 0)-Poincaré inequality for some 1<q 0<p, then every uniformlyp-fat set is uniformlyq-fat for someq<p. This bootstrap result implies the Hardy inequality for Newtonian functions with zero boundary values for domains whose complements are uniformly fat. While proving this result, we also characterize positive Radon measures in the dual of the Newtonian space using the Wolff potential and obtain an estimate for the oscillation ofp-harmonic functions andp-energy minimizers near a boundary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Bj] J. Björn,Boundary continuity for quasi-minimizers on metric spaces, Preprint (2000).

  • [C] J. Cheeger,Differentiability of Lipschitz functions on measure spaces, Geom. Funct. Anal.9 (1999), 428–517.

    Article  MathSciNet  MATH  Google Scholar 

  • [FHK] B. Franchi, P. Hajłasz and P. Koskela,Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble)49 (1999), 1903–1924.

    Article  MathSciNet  MATH  Google Scholar 

  • [HaK] P. Hajłasz and P. Koskela,Sobolev met Poincaré, Mem. Amer. Math. Soc.145 (2000).

  • [HW] L. I. Hedberg and T. Wolff,Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble)33 (1983), 161–187.

    Article  MathSciNet  MATH  Google Scholar 

  • [HKM] J. Heinonen, T. Kilpeläinen and O. Martio,Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993.

    MATH  Google Scholar 

  • [HeK] J. Heinonen and P. Koskela,Quasiconformal maps in metric spaces with controlled geometry, Acta Math.181 (1998), 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  • [KaSh] S. Kallunki and N. Shanmugalingam,Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math. (to appear).

  • [KL] J. Kinnunen and V. Latvala,Lebesgue points for Sobolev functions on metric measure spaces, Preprint (2000).

  • [KM1] J. Kinnunen and O. Martio,The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math.21 (1996), 367–382.

    MathSciNet  MATH  Google Scholar 

  • [KM2] J. Kinnunen and O. Martio,Hardy’s inequalities for Sobolev functions, Math. Res. Lett.4 (1997), 489–500.

    MathSciNet  MATH  Google Scholar 

  • [KiSh] J. Kinnunen and N. Shanmugalingam,Quasi-minimizers on metric spaces, Preprint (1999).

  • [KMc] P. Koskela and P. MacManus,quasiconformal mappings and Sobolev spaces, Studia Math.131 (1998), 1–17.

    MathSciNet  MATH  Google Scholar 

  • [Ku] A. Kufner,Weighted Sobolev Spaces, Wiley, New York, 1985

    MATH  Google Scholar 

  • [L] J. Lewis,Uniformly fat sets, Trans. Amer. Math. Soc.308 (1988), 177–196.

    Article  MathSciNet  MATH  Google Scholar 

  • [LM] P. Lindqvist and O. Martio,Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math.155 (1985), 153–171.

    Article  MathSciNet  MATH  Google Scholar 

  • [Li] J.-L. Lions,Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  • [M1] V. Maz’ya.Regularity at the boundary of solutions of elliptic equations and conformal mapping, Dokl. Akad. Nauk SSSR150:6 (1963), 1297–1300 (in Russian); English transl.: Soviet Math. Dokl.4: 5 (1963), 1547–1551.

    MathSciNet  Google Scholar 

  • [M2] V. Maz’ya,On the continuity at a boundary point of solutions of quasi-linear elliptic equations, Vestnik Leningrad. Univ.25: 13 (1970), 42–55 (in Russian); English transl.: Vestnik Leningrad Univ. Math.3 (1976), 225–242.

    MathSciNet  MATH  Google Scholar 

  • [Mi] P. Mikkonen,On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci. Fenn., Math. Dissertationes104 (1996).

  • [MV] V. Miklyukov and M. Vuorinen,Hardy’s inequality for W 1,p0 -functions on Riemannian manifolds, Proc. Amer. Math. Soc.127 (1999), 2745–2754.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ru1] W. Rudin,Real and Complex Analysis, 3rd edn., McGraw-Hill, New York, 1987.

    MATH  Google Scholar 

  • [Ru2] W. Rudin,Functional Analysis, 2nd edn., McGraw-Hill, New York, 1991.

    MATH  Google Scholar 

  • [Se] S. Semmes,Finding curves on general spaces through quantitative, topology with applications to Sobolev and Poincaré inequalities. Selecta Math.2 (1996) 155–295.

    Article  MathSciNet  MATH  Google Scholar 

  • [Sh1] N. Shanmugalingam,Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana16 (2000), 243–279.

    Article  MathSciNet  MATH  Google Scholar 

  • [Sh2] N. Shanmugalingam,Harmonic functions on metric spaces, Illinois J. Math. (to appear).

  • [Wa] A. Wannebo,Hardy inequalities, Proc. Amer. Math. Soc.109 (1990), 85–95.

    Article  MathSciNet  MATH  Google Scholar 

  • [Wi] N. Wiener,The Dirichlet problem, J. Math. Phys.3 (1924), 127–146.

    MATH  Google Scholar 

  • [Yo] K. Yosida,Functional Analysis, Springer-Verlag, Berlin-New York, 1980.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björn, J., MacManus, P. & Shanmugalingam, N. Fat sets and pointwise boundary estimates forp-harmonic functions in metric spaces. J. Anal. Math. 85, 339–369 (2001). https://doi.org/10.1007/BF02788087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788087

Keywords

Navigation