Skip to main content
Log in

Projections of convex bodies and the fourier transform

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The Fourier analytic approach to sections of convex bodies has recently been developed and has led to several results, including a complete analytic solution to the Busemann-Petty problem, characterizations of intersection bodies, extremal sections ofl p-balls. In this article, we extend this approach to projections of convex bodies and show that the projection counterparts of the results mentioned above can be proved using similar methods. In particular, we present a Fourier analytic proof of the recent result of Barthe and Naor on extremal projections ofl p-balls, and give a Fourier analytic solution to Shephard’s problem, originally solved by Petty and Schneider and asking whether symmetric convex bodies with smaller hyperplane projections necessarily have smaller volume. The proofs are based on a formula expressing the volume of hyperplane projections in terms of the Fourier transform of the curvature function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ball,Shadows of convex bodies, Transactions of the American Mathematical Society327 (1991), 891–901.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Barthe and A. Naor,Hyperplane projections of the unit ball of ℓ np , Discrete and Computational Geometry27 (2002), 215–226.

    MATH  MathSciNet  Google Scholar 

  3. L. Dor,Potentials and isometric embeddings in L 1, Israel Journal of Mathematics24 (1976), 260–268.

    MATH  MathSciNet  Google Scholar 

  4. T. S. Ferguson,A representation of the symmetric bivariate Cauchy distributions, Annals of Mathematical Statistics33 (1962), 1256–1266.

    Article  MathSciNet  Google Scholar 

  5. R. J. Gardner,Geometric Tomography, Cambridge University Press, New York, 1995.

    MATH  Google Scholar 

  6. R. J. Gardner, A. Koldobsky and T. Schlumprecht,An analytic solution of the Busemann-Petty problem on sections of convex bodies, Annals of Mathematics149 (1999), 691–703.

    Article  MATH  MathSciNet  Google Scholar 

  7. I. M. Gelfand and G. E. Shilov,Generalized Functions, Vol. 1. Properties and Operations, Academic Press, New York, 1964.

    Google Scholar 

  8. P. Goodey and G. Zhang,Inequalities between projection functions of convex bodies, American Journal of Mathematics120 (1998), 345–367.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Herz,A class of negative definite functions, Proceedings of the American Mathematical Society14 (1963), 670–676.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Koldobsky,Schoenberg’s problem on positive definite functions, St. Petersburg Mathematical Journal3 (1992), 563–570.

    MathSciNet  Google Scholar 

  11. A. Koldobsky,Inverse formula for the Blaschke-Levy representation, Houston Journal of Mathematics23 (1997), 95–108.

    MATH  MathSciNet  Google Scholar 

  12. A. Koldobsky,A generalization of the Busemann-Petty problem on sections of convex bodies, Israel Journal of Mathematics110 (1999), 75–91.

    MATH  MathSciNet  Google Scholar 

  13. A. Koldobsky,Sections of star bodies and the Fourier transform, Contemporary Mathematics320 (2003), 225–248.

    MathSciNet  Google Scholar 

  14. A. Koldobsky,An application of the Fourier transform to sections of star bodies, Israel Journal of Mathematics106 (1998), 157–164.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Koldobsky,Intersection bodies, positive definite distributions and the Busemann-Petty problem, American Journal of Mathematics120 (1998), 827–840.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Lindenstrauss,On the extension of operators with finite dimensional range, Illinois Journal of Mathematics8 (1964), 488–499.

    MATH  MathSciNet  Google Scholar 

  17. E. Lutwak,Intersection bodies and dual mixed volumes, Advances in Mathematics71 (1988), 232–261.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Meyer and A. Pajor,Sections of the unit ball of ℓ np , Journal of Functional Analysis80 (1988), 109–123.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. M. Petty,Projection bodies, Proc. Coll. Convexity (Copenhagen, 1965), Kobenhavns Univ. Mat. Inst., pp. 234–241.

  20. R. Schneider,Zu einem problem von Shephard über die projektionen konvexer Körper, Mathematische Zeitschrift101 (1967), 71–82.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Schneider,Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  22. V. I. Semyanistyi,Some integral transformations and integral geometry in an elliptic space, Trudy Sem. Vector. Tenzor. Anal12 (1963), 297–411 (Russian).

    Google Scholar 

  23. G. C. Shephard,Shadow systems of convex bodies, Israel Journal of Mathematics2 (1964), 229–306.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. A. Thorpe,Elementary Topics in Differential Geometry, Undegraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1979.

    MATH  Google Scholar 

  25. Gaoyong Zhang,A positive answer to the Busemann-Petty problem in four dimensions, Annals of Mathematics149 (1999), 535–543.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Koldobsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koldobsky, A., Ryabogin, D. & Zvavitch, A. Projections of convex bodies and the fourier transform. Isr. J. Math. 139, 361–380 (2004). https://doi.org/10.1007/BF02787557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787557

Keywords

Navigation