Medical Oncology

, Volume 15, Issue 4, pp 212–221 | Cite as

Monoclonal antibodies in solid tumours: approaches to therapy with emphasis on gynaecological cancer

  • G Fleckenstein
  • R Osmers
  • J Puchta


Monoclonal antibodies have progressed from the laboratory to the clinic. Although recognised in diagnosis there are still problems as far as their therapeutic use is concerned. This review looks at the history, principles of active specific immunotherapy, clinical experience with monoclonal antibodies in therapy of solid tumours, in particular the development of new bispecific monoclonal antibodies, and trials in ovarian, breast and colorectal cancer. Immunoconjugates, linked with radionuclides and cytotoxic drugs, indicate future developments. Conditions for successful therapy, especially with adjuvants in patients with small tumour residues, are also described.


active and passive specific immunotherapy monoclonal antibodies solid tumours bispecific monoclonal antibodies radioimmunoconjugates chemoimmunoconjugates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mallmann P. Immuntherapie in der gynäkologischen Onkologie.Geburtsh Frauenkeilk 1994;54: 137–139.Google Scholar
  2. 2.
    MacLean G, Reddish MA, Bowen-Yacyshyn MB, Poppema S, Longenecker BM. Active specific immunotherapy against adenocarcinomas.Cancer Invest 1994;12: 46–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Gramatzki M, Valerius T. Antikörper als spezifische Tumortherapeutika. Wunschtraum oder Realität?Internist 1997;38: 1055–1062.PubMedCrossRefGoogle Scholar
  4. 4.
    Ehrlich P. On immunity with special reference to cell life.Proc R Soc Lond 1900;66: 424–448.Google Scholar
  5. 5.
    Kruit WHJ, Stoter G. The role of adoptive immunotherapy in solid cancers.Neth J Med 1997;50: 47–68.PubMedCrossRefGoogle Scholar
  6. 6.
    Köhler G, Milstein C. Continuous cultures of fused cells producing antibodies to predefined specificity.Nature 1975;256: 495–497.PubMedCrossRefGoogle Scholar
  7. 7.
    Oettger HF, Hellström KE. Principles of immunology: tumor immunology. In: Holland, Frei (eds)Cancer Med Lea and Febiger: Philadelphia, 1982, p 1029.Google Scholar
  8. 8.
    Schirrmacher V. Tumoren: Entstehung, Metastasierung und immunologische Abwehrmechanismen. In: Gemsa D, Kalden JR, Resch K (eds).Immunologie. Thieme: Stuttgart/New York 1991, p 185.Google Scholar
  9. 9.
    Steplewski Z. Advances and outlooks for immunotherapy of cancer.Hybridoma 1993;12: 493–500.PubMedGoogle Scholar
  10. 10.
    Ahlert T, Bastert G, Schirrmacher V. Mamma- und Ovarial-Karzinom mit autologen, virusmodifizierten Tumorzellen, aktiv-spezifische Immuntherapie (ASI): Theorie, Praxis, Perspektiven. Therapiewoche Gynäkologie 1989;2: 359–364.Google Scholar
  11. 11.
    Wagner Uet al. Clinical courses of patients with ovarian carcinomas after the induction of anti-idiotypic antibodies against a tumour-associated antigen—an approach to immunotherapy of advanced ovarian cancer.Tumor Diagnostik Ther 1990;11: 1–4.Google Scholar
  12. 12.
    Osmers RGW, Rybicki T, Meden H, Kuhn W. Does an immunoscintigraphy with OC 125 affect the prognosis of ovarian cancer?Eur J Gynaec Oncol 1997; 177–182.Google Scholar
  13. 13.
    Grimm EA, Mazumdar A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin-2-activated autologous human peripheral blood lymphocytes.J Exp Med 1982;155: 1823–1841.PubMedCrossRefGoogle Scholar
  14. 14.
    Canirell DA, Smith KA. The interleukin-2 T-cell system: a new cell growth model.Science 1984;224: 1312–1316.CrossRefGoogle Scholar
  15. 15.
    Gemlo BT, Palladino MA, Jaffe HS, Espevik TP, Rayner AA. Circulating cytokines in patients with metastatic cancer treated with recombinant interleukin-2 and lymphokine-activated killer cells.Cancer Res 1988;48: 5864–5867.PubMedGoogle Scholar
  16. 16.
    Rosenberg SAet al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine activated killer cells and interleukin-2 or high-dose interleukin-2 alone.N Engl J Med 1987;316: 889–897.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenberg SAet al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients.Ann Surg 1989;210: 474–485.PubMedCrossRefGoogle Scholar
  18. 18.
    Buter Jet al. A progress report on the outpatient treatment of patients with advanced renal cell carcinoma using subcutaneous recombinant interleukin-2.Semin Oncol 1993;20: 16–21.PubMedGoogle Scholar
  19. 19.
    Baron Set al. The interferons. Mechanisms of action and clinical applications.J Am Med Assoc 1991;266: 1375–1383.CrossRefGoogle Scholar
  20. 20.
    Quesada JRet al. Antitumor activity of recombinant-derived interferon-α in metastatic renal cell carcinoma.J Clin Oncol 1985;3: 1522–1528.PubMedGoogle Scholar
  21. 21.
    Topalian SL, Muul LM, Solomon D, Rosenberg SA. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials.J Immunol Methods 1987;102: 127–141.PubMedGoogle Scholar
  22. 22.
    Mallmann P. Autologous tumor cell vaccination and lymphokine-activated tumour-infiltrating lymphocytes (LAK-TILs).Hybridoma 1993;12: 559–564.PubMedGoogle Scholar
  23. 23.
    Coons T. Monoclonal antibodies: the promise and the reality.Radiol Technol 1995;67: 39–60.PubMedGoogle Scholar
  24. 24.
    Reichmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy.Nature 1988;332: 323–327.CrossRefGoogle Scholar
  25. 25.
    Marks C, Marks JD. Phage libraries—a new route to clinically useful antibodies.N Engl J Med 1996;335: 730–733.PubMedCrossRefGoogle Scholar
  26. 26.
    Yao Zet al. Improved targeting of radiolabeled streptavidin in tumors pretargeted with biotinylated monoclonal antibodies through an avidin chase.J Nucl Med 1995;36: 837–841.PubMedGoogle Scholar
  27. 27.
    Chatal JFet al. Does immunoscintigraphy serve clinical needs effectively? Is there a future for radioimmunotherapy?.Eur J Nucl Med 1992;19: 205–213.PubMedCrossRefGoogle Scholar
  28. 28.
    Bast RCet al. Reactivity of monoclonal antibody with human ovarian carcinoma.J Clin Invest 1981;68: 1331–1337.PubMedGoogle Scholar
  29. 29.
    Bast RCet al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer.New Engl J Med 1983;309: 883–887.PubMedCrossRefGoogle Scholar
  30. 30.
    Gitsch E, Pateisky N. Radioimmunoszintigraphie beim Ovarialkarzinom: Theoretische Grundlagen und klinischen Erfahrungen.Arch Gynecol Obstet 1987;242: 365–370.PubMedCrossRefGoogle Scholar
  31. 31.
    Munz DL. Immunszintigraphie mit monoklonalen Antikörpern.Dtsch med Wschr 1987;112: 649–654.PubMedCrossRefGoogle Scholar
  32. 32.
    Koprowski H, Herlyn D, Lubeck M, Defreitas E, Sears F. Human anti-idiotype antibodies in cancer patients: Is the modulation of the immune response beneficial for the patient?.Proc Natl Acad Sci USA 1984;81: 216–219.PubMedCrossRefGoogle Scholar
  33. 33.
    Stramignoni D, Bowen R, Atkinson BR, Schlom J. Differential reactivity of monoclonal antibodies with human colon adenocarcinomas and adenomas.Int J Cancer 1983;31: 543–552.PubMedCrossRefGoogle Scholar
  34. 34.
    Rodwell JDet al. Site-specific covalent modification of monoclonal antibodies:in vitro andin vivo evaluations.Proc Natl Acad Sci USA 1986;83: 2632–2636.PubMedCrossRefGoogle Scholar
  35. 35.
    Maguiere RT, Pascucci VL, Maroli AN, Gulfo JV. Immunoscintigraphy in patients with colorectal, ovarian and prostatic cancer.Cancer 1993;72: 3453–3462.CrossRefGoogle Scholar
  36. 36.
    Nabi HA, Doerr RJ, Balu D, Rogan L, Farrell EL, Evans NH. Gamma probe assistedex vivo detection of small lymph node metastases following the administration of indium 111-labeled monoclonal antibodies to colorectal cancers.J Nucl Med 1993;34: 1818–1822.PubMedGoogle Scholar
  37. 37.
    Imai K, Hareyama M, Makiguchi Y, Matsumoto H, Hinoda Y. Monoclonal antibody-conjugated immunotherapy of cancer.Intern Rev Immunol 1997;14: 213–227.Google Scholar
  38. 38.
    Gramatzki Met al. Therapy with OKT3 monoclonal antibody in refractory T cell acute lymphoblastic leukemia induces interleukin-2-responsiveness.Leukemia 1995;9: 382–390.PubMedGoogle Scholar
  39. 39.
    Baum Wet al. Therapy with monoclonal antibody TH-69 is highly effective for xenografted human T-cell ALL.Br J Haematol 1996;95: 327–338.PubMedCrossRefGoogle Scholar
  40. 40.
    Dillman RO. Antibodies as cytotoxic therapy.J Clin Oncol 1994;12: 1497–1515.PubMedGoogle Scholar
  41. 41.
    Grossbard ML, Press OW, Appelbaum FR, Bernstein ID, Nadler LM. Monoclonal antibody-based therapies of leukemia and lymphoma.Blood 1992;80: 863–878.PubMedGoogle Scholar
  42. 42.
    Herlyn D, Lubeck M, Sears H, Koprowski H. Specific detection of anti-idiotypic immune responses in cancer patients treated with murine monoclonal antibody.J Immunol Methods 1985;85: 27–39.PubMedCrossRefGoogle Scholar
  43. 43.
    Jurcic JG, Scheinberg DA, Houghton AN. Monoclonal antibody therapy of cancer.Cancer Chemotherapy and Biological Response Modifiers Annual 1994;15: 152–175.Google Scholar
  44. 44.
    de Santes Ket al. Radiolabeled antibody targeting of the HER-2/neu oncoprotein.Cancer Res 1992;52: 1916–1923.PubMedGoogle Scholar
  45. 45.
    Baselga Jet al. Phase II study of weekly intravenous recombinant humanized anti-p 185HER-2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer.J Clin Oncol 1996;14: 737–744.PubMedGoogle Scholar
  46. 46.
    Riethmüller Get al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma.Lancet 1994;343: 1177–1183.PubMedCrossRefGoogle Scholar
  47. 47.
    Courtenay-Luce NSet al. Development of anti-idiotypic antibodies against tumor antigens and autoantigens in ovarian cancer patients treated intraperitoneally with mouse monoclonal antibodies.Lancet 1988;15: 894–896.CrossRefGoogle Scholar
  48. 48.
    Wagner U. Antitumor antibodies for immunotherapy of ovarian carcinomas.Hybridoma 1993;12: 521–528.PubMedCrossRefGoogle Scholar
  49. 49.
    Deo YM, Graziano RF, Repp R, Van de Winkel JGJ. Clinical significance of IgG receptors and FcyR-directed immunotherapies.Immunol Today 1997;18: 127–135.PubMedCrossRefGoogle Scholar
  50. 50.
    Valone FHet al. Phase 1a/1b trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogen Her-2/neu.J Clin Oncol 1995;13: 2281–2292.PubMedGoogle Scholar
  51. 51.
    Repp Ret al. G-CSF stimulated PMN in immunotherapy of breast cancer with a bispecific antibody to FryRl and to HER-2/neu (MDX 210).J Hematother 1995;4: 415–421.PubMedGoogle Scholar
  52. 52.
    Canevari Set al. Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody.J Natl Cancer Inst 1995;87: 1463–1469.PubMedCrossRefGoogle Scholar
  53. 53.
    Weiner LMet al. A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting c-erbB-2 and CD16.Cancer Res 1993;53: 94–100.PubMedGoogle Scholar
  54. 54.
    Vallera DA. Immunotoxins: will their clinical promise be fulfilled?Blood 1994;83: 309–317.PubMedGoogle Scholar
  55. 55.
    Wilder RB, DeNardo GL, DeNardo SJ. Radioimmunotherapy: recent results and future directions.J Clin Oncol 1996;14: 1383–1400.PubMedGoogle Scholar
  56. 56.
    Schlom Jet al. Therapeutic advantage of high-affinity anticarcinoma radioimmunoconjugates.Cancer Res 1992;52: 1067–1072.PubMedGoogle Scholar
  57. 57.
    Rao DV, Howell RW. Time-dose-fractionation in radioimmunotherapy: implications for selecting radionuclids.J Nucl Med 1993;34: 1801–1810.PubMedGoogle Scholar
  58. 58.
    Gerretsen Met al. Radioimmunotherapy of human head and neck squamous cell carcinoma xenografts with131I-labeled monoclonal antibody E48 IgG.Br J Cancer 1992;66: 496–502.PubMedGoogle Scholar
  59. 59.
    Bardiès Met al. Dosimetric estimations from uptake and retention kinetics of indium-111-labeled OC125 antibody in ovarian carcinoma (OC) multicell spheroids.J Nucl Med 1991;32, 997 (abstr).Google Scholar
  60. 60.
    Koch Bet al. In vitro activity of immunoconjugates between cisplatinum and monoclonal antibodies.Antibody Immunocon Radiopharm 1991;4: 121–132.Google Scholar
  61. 61.
    Trail PAet al. Antigen-specific activity of carcinoma-reactive BR64-doxorubicin conjugates evaluatedin vitro and in human tumor xenograft models.Cancer Res 1992;52: 5693–5700.PubMedGoogle Scholar
  62. 62.
    Trail PAet al. Effect of linker variation on the stability, potency, and efficacy of carcinoma-reactive BR64-doxorubicin immunoconjugates.Cancer Res 1997;57: 100–105.PubMedGoogle Scholar
  63. 63.
    Pegram Met al. Phase II study of intravenous recombinant humanised anti-p185 HER-2/neu monoclonal antibody (rHu Mab HER-2) plus cisplatinum in patients with HER-2/neu overexpressing metastatic breast cancer.Proc Am Soc Clin Oncol 1995;14: 106a.Google Scholar
  64. 64.
    Scott AM, Welt S. Antibody-based immunological therapies. Current opinion in immunology.Curr Sci 1997;9: 717–722.Google Scholar
  65. 65.
    Ben-Efraim S. Cancer immunotherapy: hopes and pitfalls: a review.Anticancer Res 1996;16: 3235–3240.PubMedGoogle Scholar

Copyright information

© Stockton Press 1998

Authors and Affiliations

  • G Fleckenstein
    • 1
  • R Osmers
    • 1
  • J Puchta
    • 1
  1. 1.Department of Gynecology and ObstetricsUniversity of GöttingenGermany

Personalised recommendations