Journal d’Analyse Mathématique

, Volume 2, Issue 1, pp 1–28 | Cite as

Interpolation and orthonormal systems

  • J. L. Walsh
  • Philip Davis
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bergman,Zwei Saetze über Funktionen von zwei komplexen Veraenderlichen, Math. Ann. vol. 100 (1928), pp. 399–410.CrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Bergman,Partial differential equations, advanced topics, Brown Univ. Notes, Providence, R. I., 1941.Google Scholar
  3. 3.
    S. Bergman,The kernel function and conformal mapping, Math. Surveys vol. 5, New York, 1950.Google Scholar
  4. 4.
    L. Bieberbach.Lehrbuch der Funktionentheorie, vol. II, Berlin, 1927.Google Scholar
  5. 5.
    P. Davis,On the applicability of linear differential operators of infinite order to functions of class L 2 (B), Amer. J. Math. vol. 74 (1952), pp. 475–491.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    P. Davis,An application of doubly orthogonal functions to a problem of approximation in two regions, Trans. Amer. Math. Soc. vol. 72 (1952), pp. 104–137.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    T. H. Gronwall,Some remarks on conformal representations, Ann. of Math. vol. 16 (1914), p. 72.CrossRefMathSciNetGoogle Scholar
  8. 8.
    H. Lebesgue,Sur le problème de Dirichlet, Palermo Rendiconti, vol. 24 (1907) pp. 371–402.Google Scholar
  9. 9.
    O. Lokki,Ueber analytische Funktionen, deren Dirichlet Integral endlich ist und die in gegebenen Punkten vorgeschriebene Werte annebmen, Ann. Acad. Sci. Fennicae, series A vol. 39 (1947), pp. 7–57.Google Scholar
  10. 9a.
    O. Lokki,Ueber eine Klasse von analytischen Funktionen, Comptes Rendus du Dixième Congrès (1946) des mathématiciens scandinaves, Kopenhagen, 1947.Google Scholar
  11. 10.
    F. Malmquist,Sur, la détermination d'une classe de fonctions analytiques par leurs valeurs dans un ensemble de points. Comptes Rendus du Sixième Congrès (1925) des mathématiciens scandinaves, Kopenhagen, 1926.Google Scholar
  12. 11.
    S. Takenaka,On the orthogonal functions and the new formula of interpolation, Jap. J. Math. vol. 2 (1925) pp. 129–145.Google Scholar
  13. 12.
    J. L. Walsh,On the expansion of analytic functions in series of polynomials, Trans. Amer. Math. Soc., vol. 26 (1924) pp. 155–170; vol. 30 (1928) pp. 307–332; vol. 31 (1929) pp. 53–57.CrossRefMathSciNetGoogle Scholar
  14. 13.
    J. L. Walsh,Interpolation and functions analytic interior to the unit circle, Trans. Amer. Math. Soc., vol. 34 (1932) pp. 523–556.MATHCrossRefMathSciNetGoogle Scholar
  15. 14.
    J. L. Walsh,Interpolation and approximation, Amer. Math. Soc., Colloquium Publications, vol. XX, New York, 1935.Google Scholar
  16. 15.
    J. L. Walsh,On interpolation by functions analytic and bounded in a given region, Trans. Amer. Math. Soc., vol. 46 (1939) pp. 46–65.MATHCrossRefMathSciNetGoogle Scholar
  17. 16.
    J. L. Walsh and E. N. Nilson,On functions analytic in a region; approximation in the sense of least p th powers, Trans. Amer. Math. Soc., vol. 65 (1949) pp. 239–258.MATHCrossRefMathSciNetGoogle Scholar
  18. 17.
    D. V. Widder,On the expansions of analytic functions of the complex variable in generalized Taylor series, Trans. Amer. Math. Soc., vol 31 (1929) pp. 43–57.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1952

Authors and Affiliations

  • J. L. Walsh
    • 1
  • Philip Davis
    • 1
  1. 1.Harvard UniversityCambridgeU.S.A.

Personalised recommendations