Skip to main content
Log in

Monte Carlo calculations on interactions of 300 MeV protons with carbon

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Monte Carlo calculations on interactions of 300 MeV protons with carbon nuclei have been performed by means of a Remington Rand Univae U.T.C. electronic computer. In the first part of the calculations nuclear cascades of collisions on bound nucleons were studied. The same calculations were then repeated with the assumption that each cascade nucleon has a non-zero probability (30% and 40%) of colliding with an α-cluster instantaneously formed inside the nucleus. The treatment of the cascade was carried out with both the assumptions of a Fermi and of a gaussian distribution of nucleon momenta inside the nucleus. The results obtained were the percentages of cascades as functions of the number of collisions and of the number and nature of fast secondaries, the angular and energy distributions of the fast secondaries, and the excitation-energy distributions of the residual nuclei. The comparison of the results of the calculations with the few available experimental data gives the best agreement if the hypothesis of the existence of clusters inside the nucleus is adopted. The assumption that the momentum distribution of the nucleons is gaussian leads to absurd results concerning the energy spectrum of fast secondary nucleons and the spectrum of excitation energies of the residual nuclei. If, instead, one assumes a Fermi momentum distribution, the calculated spectra are reasonable and in agreement with experimental data.

Riassunto

Si sono studiate in questo lavoro le interazioni di protoni di 300 MeV di energia. su nuclei di carbonio applicando un metodo di Montecarlo a mezzo di una calcolatrice elettronica Remington Univac U.T.C. In una prima parte dei calcoli si sono studiate cascate costituite solamente da interazioni nucleone-nucleone ; successivamente si sono studiate le interazioni assumendo che ciascun nucleone della cascata avesse una probalilità diversa da zero (30% e 40%) di urtare contro una sottostruttura α, formatasi istantaneamente in seno al nucleo. La trattazione della cascata è stata svolta sia sulla. base di una distribuzione alla Fermi, che di una distribuzione gaussiana delle quantità di moto dei nucleoni in seno al nucleo. I nostri risultati si riferiscono alle percentuali delle cascate distinte in base al numero delle collisioni ed alla natura dei secondari veloci uscenti, alle distribuzioni angolari ed energetiche dei nucleoni veloci, alle energie di eccitazione dei nuclei dopo la cascata. Il confronto dei risultati dei nostri calcoli coi dati sperimentali è in accordo con l’ipotesi di esistenza di sottostrutture in seno al nucleo. L’assunzione di una distribuzione gaussiana delle quantità di moto dei nucleoni porta a risultati assurdi nelle distribuzioni delle energie di eccitazione dei nuclei e delle energie dei secondari veloci. Se invece si assume una distribuzione alla Fermi gli spettri che si ottengono sono ragionevoli ed in accordo con i dati sperimentali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Serber:Phys. Rev.,72, 1114 (1947).

    Article  ADS  Google Scholar 

  2. M. L. Goldberger:Phys. Rev.,74, 1296 (1948).

    Article  Google Scholar 

  3. C. F. Chew andG. C. Wick:Phys. Rev.,85, 636 (1952).

    Article  ADS  Google Scholar 

  4. G. Bernardini, E. T. Booth andS. J. Lindenbaum:Phys. Rev.,82, 307 (1951);85, 826 (1952);88, 1017 (1952).

    Article  Google Scholar 

  5. G. C. Morrison, A. Muirhead andW. G. Rosser:Phil. Mag.,44, 1326 (1954).

    Article  Google Scholar 

  6. H. McManus, W. T. Sharp andH. Gellman:Phys. Rev.,93, 924 (1954).

    Google Scholar 

  7. N. Metropolis, R. Bivins, M. Storm, A. Turkevitch, J. M. Miller andG. Friedlander:Phys. Rev.,110, 185 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Combe:Suppl. Nuovo Cimento,3, 182 (1956);Ann. de Phys.,13, 468 (1958).

    Article  ADS  Google Scholar 

  9. J. Combe:Journ. de Phys. et Rad.,16, 445 (1955).

    Article  Google Scholar 

  10. E. Fiorini andS. Ratti:Nuovo Cimento,14, 961 (1959).

    Article  Google Scholar 

  11. M. Cüer andJ. Combe:Compt. Rend.,240, 1527(1955).

    Google Scholar 

  12. M. Cüer andA. Samman:Journ. Phys. et Rad.,19, 1, 13(1958).

    Article  Google Scholar 

  13. L. Azhgirey, I. K. Vzorov, V. P. Zrelov, M. G. Mescheryakov, B. S. Neganov andA. P. Shabudin:Soviet Phys. JETP,6, 911 (1958).

    ADS  Google Scholar 

  14. M. Q. Barton andJ. H. Smith:Phys. Rev.,110, 1143 (1958).

    Article  ADS  Google Scholar 

  15. V. I. Ostroumov andR. A. Filov:Soviet Phys. JETP,10, 3, 459 (1960).

    Google Scholar 

  16. V. I. Ostroumov, N. A. Perfilov andR. A. Filov:Soviet Phys. JETP,12, 1 (1961).

    Google Scholar 

  17. Yu. I. Serebrennikov:Dissertation, Leningrad Polytech. Inst. (1959).

  18. R. McKeaque:Proc. Roy. Soc., A236, 104 (1956).

    Article  ADS  Google Scholar 

  19. D. H. Wilkinson:Phil. Mag.,4, 215 (1959).

    Article  ADS  Google Scholar 

  20. K. K. Seth:Rev. Mod. Phys.,30, 442 (1958);Can. Journ. Phys.,37, 1199 (1959).

    Article  ADS  Google Scholar 

  21. J. L. Fowler andJ. E. Brolley:Rev. Mod. Phys.,28, 103 (1956).

    Article  ADS  Google Scholar 

  22. C. Møller:General property of the characteristic matrix in the theory of elementary particles, inKgl. Dan. Videnskab. Selsk. (1946).

  23. K. A. Brueckner, E. J. Eden andN. C. Francis:Phys. Rev.,98, 1445 (1955).

    Article  ADS  Google Scholar 

  24. E. M. Henley:Phys. Rev.,85, 204 (1952).

    Article  ADS  Google Scholar 

  25. P. A. Wolff:Phys. Rev.,87, 434 (1952).

    Article  ADS  Google Scholar 

  26. J. B. Cladis, W. N. Hess andB. J. Mover:Phys. Rev.,87, 425 (1952).

    Article  ADS  Google Scholar 

  27. Simposium on Monte Carlo Method, University of Florida (1954).

  28. A. Wildermuth andC. Kanellopoulos : Theoretical Study Division, CERN-59

  29. P. E. Hogdson:Nucl. Phys.,8, 1 (1958).

    Article  Google Scholar 

  30. O. Chamberlain, E. Segrè, E. Tripp, C. Wiegand andT. Ypsilantis:Phys. Rev.,96, 807 (1954);102, 1696 (1956).

    Article  ADS  Google Scholar 

  31. W. Selove andE. J. M. Teem:Phys. Rev.,112, 1658 (1958).

    Article  ADS  Google Scholar 

  32. R. Eisberg:Phys. Rev.,102, 1104 (1956);Bull. Am. Phys. Soc.,1, 19 (1956).

    Article  ADS  Google Scholar 

  33. P. E. Tannenwald:Phys. Rev.,87, 205 (1952);89, 508 (1953).

    Google Scholar 

  34. J. Heidmann:Phil. Mag.,41, 444 (1950).

    Article  Google Scholar 

  35. E. E. Gross:Bull. Am. Phys. Soc.,2, 14 (1957).

    Google Scholar 

  36. J. Hadley andH. York:Phys. Rev.,80, 345 (1950).

    Article  ADS  Google Scholar 

  37. L. Azhgirey, I. K. Vzorov, V. P. Zrelov, M. G. Mescheryakov, B. S. Neganov andA. F. Shabudin:Soviet Phys. JETP,33, 1185 (1952).

    Google Scholar 

  38. C. Richman andH. Wilcox:Phys. Rev.,78, 496 (1950).

    Article  ADS  Google Scholar 

  39. J. Wilcox andB. Moyer:Phys. Rev.,99, 875 (1955).

    Article  ADS  Google Scholar 

  40. J. McEven, W. Gibson andP. Duke:Phil. Mag.,2, 231 (1957).

    Article  ADS  Google Scholar 

  41. L. S. Azhgirey, I. K. Vzorov, V. P. Zrelov, M. G. Mescheryakov, B. S. Neganov, R. M. Rymdin andA. F. Shabudin:Nucl. Phys.,13, 238 (1959).

    Article  Google Scholar 

  42. W. Selove:Phys. Rev.,101, 231 (1950).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abate, E., Bellini, G., Fiorini, E. et al. Monte Carlo calculations on interactions of 300 MeV protons with carbon. Nuovo Cim 22, 1206–1236 (1961). https://doi.org/10.1007/BF02786894

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786894

Navigation