Glycosidases in plant tissues of some brassicaceae screening of different cruciferous plants for glycosidases production


Glycosidases namely myrosinase and β-amylase, have been isolated fromBrassicaceae. These enzymes were identified and estimated by the rate of glucose and maltose formation from sinigrin (thioglucosinolate) and amylose (polysaccharides) hydrolysis, respectively. Their activities (U/g dry tissues) varied with the different species of the plant and with the different parts of their tissues. Generally, they were higher in the germinated seeds (3.3-8.0 times) than in powdered or defatted powdered dry seeds. The best amylase and myrosinase extracting solution for radish and white mustard germinated seeds was distilled water, and for turnip germinated seeds, it was 0.1M phosphate buffer, pH 6.0. In the light, the optimum germination temperature for amylase production or activation by radish and white mustard seeds was 25°C, and for turnip seeds, it was 30°C, whereas for myrosinase production or activation by radish and turnip, 25–27°C was the optimum temperature.

The highest myrosinase activities in black mustard and radish defatted dry seeds were obtained by extraction with 1% NaCl at 272/30°C and distilled water at 25–27°C, after an incubation period of 4–6 h. Comparative studies indicated that fresh radish roots were the most potent amylase and myrosinase producers compared with radish leaves or roots, stems, and leaves of turnip and cabbage.

Amylase and myrosinase were partially purified from water extracts of fresh radish roots by optimum precipitation with ammonium sulfate (100%). Some physicochemical properties were studied.

This is a preview of subscription content, access via your institution.


  1. 1.

    MacGibbon, D.B. and Allison, R. M. (1970),Phytochemistry 9, 541.

    Article  CAS  Google Scholar 

  2. 2.

    Wilkinson, A. P., Rhodes, M. J. C., and Fenwick, R. G. (1984),J. Sci. Food Agric. 35, 543.

    Article  CAS  Google Scholar 

  3. 3.

    Jwanny, E. W. and El-Sayed, S. T. (1994),App. Biochem. Biotechnol. 48.

  4. 4.

    Pihakaski, K. and Pihakaski, S. (1978),J. Exp. Bot. 29, 335.

    Article  CAS  Google Scholar 

  5. 5.

    Bones, A. and Iversen, T.-H. (1985),Israel J. Bot. 34, 351.

    CAS  Google Scholar 

  6. 6.

    Bones, A. M. (1990),J. Exp. Bot. 41, 737.

    Article  CAS  Google Scholar 

  7. 7.

    Chapman, Jr., G. W., Pallas, J. E., Jr., and Mendicino, J. (1972),Bichem. Biophys. Acta 276, 491.

    CAS  Google Scholar 

  8. 8.

    Okamato, K. and Akazawa, T. (1978),Plant Physiol. 63, 336.

    Article  Google Scholar 

  9. 9.

    Rashad, M. M., El-Sayed, S. T., and Hashem, A. M. (1993),Bull. Fac. Pharm. Cairo Univ. 31, 165.

    CAS  Google Scholar 

  10. 10.

    El-Sayed, S. T. (1994),Bull. Fac. Pharm. Cairo Univ. 33.

  11. 11.

    Daussant, J., Mayer, C., and Renard, H. A. (1980),Cereal Res. Commun. 8, 49.

    CAS  Google Scholar 

  12. 12.

    Manner, D. J. (1985), inBiochemistry of Storage Carbohydrates in Green Plants, Dey, P. M. and Dixon, R. A., eds., Academic, New York, pp. 149.

    Google Scholar 

  13. 13.

    Sharma, R. and Schopfer, P. (1982),Planta 155, 183.

    Article  CAS  Google Scholar 

  14. 14.

    Subbaramaiah, K. and Sharma, R. (1987),J. Chromatogr. 390, 463.

    Article  CAS  Google Scholar 

  15. 15.

    Thies, W. L. (1988),Fat. Sci. Technol. 90, 311.

    CAS  Google Scholar 

  16. 16.

    Somogyi, M. (1952),J. Biol. Chem. 195, 19.

    CAS  Google Scholar 

  17. 17.

    Nelson, N. (1994),J. Biol. Chem. 153, 375.

    Google Scholar 

  18. 18.

    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265.

    CAS  Google Scholar 

  19. 19.

    Ettlinger, M. G. and Kjaer, A. (1968), inRecent Advances in Phytochemistry, Mabry, T. J., Alston, R. E., and Runeckles, V. C., eds., Appleton, Century, Crofts, New York.

    Google Scholar 

  20. 20.

    Okamoto, K. and Akazawa, T. (1978),Agric. Biol. Chem. 42, 1379.

    CAS  Google Scholar 

  21. 21.

    McGregor, D. I. (1988),Can. J. Plant Sci. 68, 367.

    CAS  Article  Google Scholar 

  22. 22.

    Rowsell, E. V. and Goad, L. J. (1962),Biochem. J. 84, 73p.

    Google Scholar 

  23. 23.

    Jacobsen, J. V. and Varner, J. E. (1967),Plant Physiol. 42, 1596.

    CAS  Google Scholar 

  24. 24.

    Tronier, B. and Ory, R. L. (1970),Cereal Chem. 47, 464.

    CAS  Google Scholar 

  25. 25.

    Subbaramaiah, K. and Sharma, R. (1989),Plant Physiol. 89, 860.

    CAS  Google Scholar 

  26. 26.

    Henderson, H. M. and McEwen, T. J. (1972),Phytochemistry 11, 3127.

    Article  CAS  Google Scholar 

  27. 27.

    Palmieri, S., Iori, R., and Leoni, O. (1986),J. Agr. Food Chem. 34, 138.

    Article  CAS  Google Scholar 

  28. 28.

    Bjorkman, R. and Lonnerdal, B. (1973),Biochem. Biophys. Acta 327, 121.

    CAS  Google Scholar 

  29. 29.

    Shi-Ching, H., Jong-Ching, S., and Hsien-Yi, S. (1977),Chung-Kuo Nung Yeh Hua Hsuch Hui Chin 15, 32.

    Google Scholar 

  30. 30.

    Ettlinger, M. G., Dateo, G. P., Harrison, B. W., Marby, T., and Thompson, C. P. (1961),Proc. Natl. Acad. Sci. 47, 1875.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Etidal W. Jwanny.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Sayed, S.T., Jwanny, E.W., Rashad, M.M. et al. Glycosidases in plant tissues of some brassicaceae screening of different cruciferous plants for glycosidases production. Appl Biochem Biotechnol 55, 219–230 (1995).

Download citation

Index Entries

  • Brassicaceae
  • cruciferae
  • radish roots
  • myrosinase (β-thioglucosidase)
  • and β-amylase (1,4-α-D-glucan maltohydrolase)