Skip to main content
Log in

Kinetics of selenite uptake by mononuclear cells from peripheral human blood

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study deals with the kinetics and thermodynamics of the uptake of75Se-labeled SeO 2−3 from incubation media to lymphocytes cultivated from eight normal individuals (14–55 years of age, two females).

The uptake of SeO 2−3 was evaluated on the assumption of pseudo-first-order kinetics with regard to a reacting cellular receptor pool. On the basis of the experimental observations, it was assumed that the suggested pool of receptor molecules-symbolically represented by “£H4”—reacts with SeO 2−3 in the hypothetical reaction:

$$\pounds H_4 + SeO_3^{2 - } + 2H^ + \underset{{ - k_1 }}{\overset{{k_1 }}{\longleftrightarrow}}\pounds Se + 3H_2 O$$

The mean value of the change in standard free energy at 25°C was calculated to be ΔG o=−141.6±1.3 kJ/mol, while the corresponding mean value of the free energy of activation at 25°C was calculated to be ΔG 2+=−7.8±0.9 kJ/mol for the forward reaction.

The calculated values of the corresponding individual changes in the respective standard enthalpies and entropies were mutually interdependent for all eight donors. ΔH o=−152+315ΔS o(kJ/mol) corresponding to the common value ΔG o≅−152 kJ/mol at 315°K. These mutual interdependencies are possibly the effect of variable conformational states (e.g., the macromolecular compactness) of the cellular receptor pools. This suggestion may furthermore be supported by the correlation traced between ΔH o vs the biological age in years of the donors: △H °≃76.7−1.0 (age)kJ/mol (r = −0.92)

The calculated values of activation enthalpy ΔH 2+ kJ/mol and activation entropy ΔS 2+ (kJ/mol K) also mutually correlated linearly (r=0.998); the regression line was: △H 2+ = −8.9 + 305△S2+ (kJ/mol) corresponding to the common value △H 2+ △ −8.9 (kJ/mol) at 305°K

Similarly the activation enthalpy ΔH 2+ vs the biological age in years correlated linearly: ΔH 2+=67.4−0.73(age) (kJ/mol) (r=−0.76)

The range of ΔH 2+ studied was from 13.8 to 53.9 kJ/mol with a linearly corresponding range in ΔS 2+ from 73 to 205 J/mol K.

The thermodynamic data reveal the selenite uptake during the hypothetical standard reaction to be exergonic and endothermic. Critical pH dependencies of the selenite uptake were explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schwarz and C. M. Foltz,J. Am. Chem. Soc. 79, 3292 (1957).

    Article  CAS  Google Scholar 

  2. L. Flohé, W. A. Günzler, and H. H. Schock,FEBS Lett.,32, 132 (1973).

    Article  PubMed  Google Scholar 

  3. J. T. Rostuck, W. C. Hoekstra, A. L. Pope, H. E. Ganther, A. Swanson, and D. Hareman,Fed. Proc. 31, 691 (1972).

    Google Scholar 

  4. H. E. Ganther, inSelenium, (R. A. Zingaro and W. C. Cooper, eds., Van Nostrand-Reinhold, Princeton, New Jersey, 1974, pp. 546–614.

    Google Scholar 

  5. J. T. Rostruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra,Science 179, 588 (1973).

    Article  Google Scholar 

  6. D. E. Metzler,Biochemistry. The chemical reactions of living cells, Academic Press, New York, 1977, p. 536.

    Google Scholar 

  7. I. M. Aria and W. B. Jacoby, eds.,Glutathione, Metabolism and Function, Raven Press, New York, 1976, p. 117.

    Google Scholar 

  8. H. Tanaka and T. C. Stadtman,J. Biol. Chem. 254, 447 (1979).

    PubMed  CAS  Google Scholar 

  9. R. A. Zingaro, J. E. Price, and C. R. Benedict,J. Carbohyd. Nucleosides Nucleotides 4(5), 271 (1977).

    CAS  Google Scholar 

  10. E. P. Painter,Chem. Rev. 28, 179 (1941).

    Article  CAS  Google Scholar 

  11. M. Sandholm and P. Sipponen,Arch. Biochem. Biophys. 155, 120 (1973).

    Article  PubMed  CAS  Google Scholar 

  12. A. Böyum,Scand. J. Clin. Lab. Invest. 21, Suppl. 97, 77 (1968).

    Google Scholar 

  13. K. Diem and C. Lentner, eds.,Documenta Geigy, Scientific Tables, Basel, Switzerland, 1975.

  14. H. Netter, “Membranpotentiale, Donnan, Gleichgewichte und active Transport,” inBiochemisches Taschenbunch, Vol. II, H. M. Rauen, ed., Springer Verlag, Berlin, 1964, p. 192.

    Google Scholar 

  15. G. E. Jensen, G. G. Nielsen, and J. Clausen,J. Neurol. Sci. 48, 61 (1980).

    Article  PubMed  CAS  Google Scholar 

  16. E. A. Dawes,Quantitative Problems in Biochemistry, Longman, London, 1980, p. 71.

    Google Scholar 

  17. E. A. Stearn,Adv. Enzymol. 9, 25 (1949).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clausen, J., Tranum, J. Kinetics of selenite uptake by mononuclear cells from peripheral human blood. Biol Trace Elem Res 4, 245–258 (1982). https://doi.org/10.1007/BF02786539

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786539

Index Entries

Navigation