Skip to main content
Log in

Inhibition of the decomposition ofZostera capricornii litter by macrobenthos and meiobenthos in a brackish coastal lake system

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

As part of the development of rapid assays to measure ecological processes, rates of decomposition of eelgrass,Zostera capricornii, were measured using litter bags placed at different distances from the sea in a coastal lake system. Average loss of dry mass over 28 d in bags with coarse mesh, which excluded animals >1.5 mm, varied from 364 to 448 mg in late winter to between 644 and 868 mg in autumn, depending on locality. Rates of loss were significantly greater in bags with small mesh (0.063 mm), from which all macrofauna were excluded, varying from 420 to 532 mg and from 868 to 924 mg in winter and autumn, respectively. There were consistent negative correlations between loss of litter and numbers of macrofauna and meiofauna in the bags. Rates of decrease in the organic fraction of the litter were positively correlated with numbers of animals. The results imply that the fauna inhibited decomposition, possibly by reducing microbial populations through grazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Barajas-Guzman, G. andJ. Alvarez-Sanchez. 2003. The relationships between litter fauna and rates of litter decomposition in a tropical rain forest.Applied Soil Ecology 24:91–100.

    Article  Google Scholar 

  • Bedford, A. P. 2004. A modified litter bag design for use in lentic habitats.Hydrobiologia 529:187–193.

    Article  Google Scholar 

  • Bedford, A. P. andP. G. Moore. 1984. Macrofaunal involvement in the sublittoral decay of kelp debris: The detritivores community and species interactions.Estuarine Coastal and Shelf Science 18:97–111.

    Article  Google Scholar 

  • Bradford, M. A., G. M. Tordoff, J. A. Eggers, T. H. Jones, andJ. E. Newington. 2002. Microbiota, fauna and mesh size interactions in litter decomposition.Oikos 99:317–323.

    Article  Google Scholar 

  • Bruquetas de Zozaya, I. Y. andJ. J. Neiff. 1991. Decomposition and colonization by invertebrates ofTypha latifolia L. litter in Chaco cattail swamp (Argentina).Aquatic Botany 40: 185–193.

    Article  Google Scholar 

  • Crowl, T. A., H. McDowell, A. P. Covich, and S. L. Johnson. 2001. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream.Ecology 82:775–783.

    Article  Google Scholar 

  • Cuffney, T. F., J. B. Wallace, andG. J. Lugthart. 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams.Freshwater Biology 23:281–299.

    Article  Google Scholar 

  • Dahms, H. andP. Qian. 2005. Exposure of biofilms to meiofaunal copepods affects the larval settlement ofHydroides elegans (Polychaeta).Marine Ecology Progress Series 297:203–214.

    Article  Google Scholar 

  • Dye, A. H. 2004. A survey of meiobenthos in the Tuggerah Lakes system, New South Wales. Report for Wyong Shire Council, Centre for Research on Ecological Impacts of Coastal Cities, University of Sydney, Sydney, Australia.

    Google Scholar 

  • Dye, A. H. 2005. Meiobenthos in intermittently closed/open coastal lakes in New South Wales: Spatial and temporal patterns in densities of major taxa.Marine and Freshwater Research 56:1–13.

    Article  Google Scholar 

  • Dye, A. H. andF. Barros. 2005a. Spatial patterns of macrofaunal assemblages in intermittently closed/open coastal lakes in New South Wales, Australia.Estuarine Coastal and Shelf Science 64:357–371.

    Article  Google Scholar 

  • Dye, A. H. andF. Barros. 2005b. Spatial patterns in meiobenthic assemblages in intermittently open/closed coastal lakes in New South Wales, Australia.Estuarine Coastal and Shelf Science 62:575–593.

    Article  Google Scholar 

  • Fairweather, P. G. 1999. Determining the “health” of estuaries: Priorities for ecological research.Australian Journal of Ecology 24: 441–451.

    Article  Google Scholar 

  • Fenchel, T. 1970. Studies on the decomposition of organic detritus derived from the turtle grassThalassia testudinum.Limnology and Oceanography 15:14–20.

    Google Scholar 

  • Frasco, B. A. andR. E. Good. 1982. Decomposition dynamics ofSpartina alterniflora andSpartina patens in a New Jersey salt marsh.American Journal of Botany 69:402–406.

    Article  Google Scholar 

  • Gallagher, J. L. 1984. Detritus processing and mineral cycling in seagrass (Zostera) litter in an Oregon salt marsh.Aquatic Botany 20:97–108.

    Article  Google Scholar 

  • Golladay, S. W. andR. L. Sinsabaugh. 1991. Biofilm development on leaf and wood surfaces in a boreal river.Freshwater Biology 25: 437–450.

    Article  CAS  Google Scholar 

  • Graca, M. A. S. 2001. The role of invertebrates on leaf litter decomposition in streams—A review.International Review of Hydrobiology 86:383–393.

    Article  Google Scholar 

  • Hanlon, R. D. G. andJ. M. Anderson. 1979. The effects ofCollembola grazing on microbial activity in decomposing leaf litter.Oecologia (Berlin) 38:93–99.

    Article  Google Scholar 

  • Harrison, P. G. 1977. Decomposition of macrophytes detritus in seawater: Effects of grazing by amphipods.Oikos 28:165–169.

    Article  Google Scholar 

  • Harrison, P. G. andA. T. Chan. 1980. Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves.Marine Biology 61:21–26.

    Article  Google Scholar 

  • Harrison, P. G. andK. H. Mann. 1975. Detritus formation from eelgrass (Zostera marina L.): The relative effects of fragmentation, leaching and decay.Limnology and Oceanography 20:924–934.

    CAS  Google Scholar 

  • Hassall, M., J. G. Turner, andM. R. W. Rands. 1987. The effects of terrestrial isopods on the decomposition of woodland leaf litter.Oecologia (Berlin) 72:597–604.

    Article  Google Scholar 

  • Heneghan, L., D. C. Coleman, X. Zou, D. A. Crossley, and B. L. Haines. 1999. Soil microarthropod contributions to decomposition dynamics: Tropical-temperate comparisons of a single substrate.Ecology 80:1873–1882.

    Google Scholar 

  • Hietz, P. 1992. Decomposition and nutrient dynamics of reed (Phragmites australis (Cav.) Trin. Ex Steud.) litter in Lake Neusiedl, Austria.Aquatic Botany 43:211–230.

    Article  CAS  Google Scholar 

  • Holm, S. 1979. A simple sequentially rejective multiple test procedure.Scandanavian Journal of Statistics 6:65–70.

    Google Scholar 

  • Hunter, M. D., S. Adl, C. M. Pringle, andD. C. Coleman. 2003. Relative effects of macro-invertebrates and habitat on the chemistry of litter during decomposition.Pedobiologia 47:101–115.

    Article  CAS  Google Scholar 

  • Ineson, P., M. A. Leonard, and J. M. Anderson. 1982. Effect of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter.Soil Biology and Biochemistry 14:601–605.

    Article  Google Scholar 

  • Irmler, U. 2000. Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests.Pedobiologia 44:105–118.

    Article  Google Scholar 

  • Kuehn, K. A., M. J. Lemke, K. Suberkropp, andR. G. Wetzel. 2000. Microbial biomass and production associated with decaying leaf litter of the emergent macrophyteJuncus effusus.Limnology and Oceanography 45:862–870.

    Article  CAS  Google Scholar 

  • Lopez, G. R., J. S. Levinton, andL. B. Slobodkin. 1977. The effect of grazing by the detritivoresOrchestia grillus onSpartina litter and its associated microbial community.Oecologia (Berlin) 30: 111–127.

    Article  Google Scholar 

  • Mann, K. H. 1988. Production and use of detritus in various freshwater, estuarine and coastal marine systems.Limnology and Oceanography 33:910–930.

    CAS  Google Scholar 

  • Mateo, M. A. andJ. Romero. 1997. Detritus dynamics in the seagrassPosidonia oceanica: Elements for an ecosystem carbon and nutrient budget.Marine Ecology Progress Series 151:43–53.

    Article  CAS  Google Scholar 

  • Mathews, C. P. andA. Kowalczewski. 1969. The disappearance of leaf litter and its contribution to production in the River Thames.Journal of Ecology 57:543–552.

    Article  Google Scholar 

  • Menendez, M., E. Fores, andF. A. Comin. 1989.Ruppia cirrhosa— Decomposition in a coastal temperate lagoon as affected by macro-invertebrates.Archiv fur Hydrobiologie 117:39–48.

    Google Scholar 

  • Menendez, M., O. Hernandez, N. Sanmarti, andF. A. Comin. 2004. Variability of organic matter processing in a Mediterranean coastal lagoon.International Review of Hydrobiology 89:476–483.

    Article  Google Scholar 

  • Opsahl, S. andR. Benner. 1993. Decomposition of senescent blades of the seagrassHalodule wrightii in a subtropical lagoon.Marine Ecology Progress Series 94:191–205.

    Article  Google Scholar 

  • Petersen, H. andM. Luxton. 1982. A comparative analysis of soil fauna populations and their role in decomposition processes.Oikos 39:287–388.

    Google Scholar 

  • Roberts, D. E. 2001. Tuggerah Lakes Estuary Process Study. Wyong Shire Council Sydney, Australia.

    Google Scholar 

  • Robertson, A. I. 1988. Decomposition of mangrove leaf litter in tropical Australia.Journal of Experimental Marine Biology and Ecology 116:235–247.

    Article  Google Scholar 

  • Romero, J., G. Pergent, C. Pergent-Martini, M. Mateo, andC. Regnier. 1992. The detritic compartment in aPosidonia oceanica meadow: Litter features, decomposition rates and mineral stocks.P.S.Z.N.I. Marine Ecology 13:69–83.

    CAS  Google Scholar 

  • Scott, A. 1999. Ecological history of the Tuggerah Lakes, Final report. Commonwealth Scientific and Industrial Research Organization, Land and Water Technical Report 18/99. Sydney, New South Wales.

  • Stockley, R. A., G. S. Oxford, andR. F. G. Ormond. 1998. Do invertebrates matter? Detrital processing in the River Swale-Ouse.The Science of the Total Environment 210:427–435.

    Article  Google Scholar 

  • Twilley, R. R., G. Ejdung, P. Romare, andW. M. Kemp. 1986. A comparative study of decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment.Oikos 47:190–198.

    Article  CAS  Google Scholar 

  • Van der Valk, A. G. andP. M. Attiwill. 1984. Decomposition of leaf and root litter ofAvicennia marina at Westernport Bay, Victoria, Australia.Aquatic Botany 18:205–221.

    Article  Google Scholar 

  • Williams, J. I.. 2002. Effects of the tropical freshwater shrimpCaridina weberi (Atyidae) on leaf litter decomposition.Biotropica 34:616–619.

    Google Scholar 

  • Wright, M. S. andA. P. Covich. 2005. The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream.Biotropica 37:403–408.

    Article  Google Scholar 

  • Zimmer, M., G. Kautz, and W. Topp. 2005. Do woodlice and earthworms interact synergistically in leaf litter decomposition?Functional Ecology 19:7–16.

    Article  Google Scholar 

  • Zimmer, M., S. C. Pennings, T. L. Buck, andT. H. Carefoot. 2004. Salt marsh litter and detritivores: A closer look at redundancy.Estuaries 27:753–769.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Dye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dye, A.H. Inhibition of the decomposition ofZostera capricornii litter by macrobenthos and meiobenthos in a brackish coastal lake system. Estuaries and Coasts: J ERF 29, 802–809 (2006). https://doi.org/10.1007/BF02786531

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786531

Keywords

Navigation