Skip to main content
Log in

Immune cell signaling aberrations in human lupus

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

A large array of heterogeneous aberrations of the immune system have been described in systemic lupus erythematosus (SLE). Since the function and the fate of the immune system cells are governed principally by the biochemical events that follow ligation of specialized cell-surface receptors, we will review in this article recent developments in our understanding of abnormalities in the biochemistry of signals generated either by the antigen-receptor complex or by systems of costimulatory cell-surface molecules, like the CD28/CTLA4:CD80/CD86 and the CD40:CD40L pairs found on the surface membrane of lupus immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsokos GC. Overview of cellular immune function in systemic lupus erythematosus;in Lahita RG (ed): Systemic Lupus Erythematosus. New York, NY, Churchill Livingstone, 1992, pp 15–50.

    Google Scholar 

  2. Liossis SNC, Vassilopoulos D, Kovacs B, Tsokos GC. Immune cell biochemical abnormalities in systemic lupus erythematosus. Clin Exp Rheumatol 1997;In press.

  3. Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell 1994;76:263–274.

    Article  PubMed  CAS  Google Scholar 

  4. De Franco AL. The complexity of signaling pathways activated by the BCR. Curr Opin Immunol 1997;9:296–308.

    Article  Google Scholar 

  5. Cambier JC, Pleiman CM, Clark MR. Signal transduction by the B cell receptor and its coreceptors. Annu Rev Immunol 1994;12:457–4186.

    Article  PubMed  CAS  Google Scholar 

  6. Reth M. Antigen receptor tail clue. Nature (Lond) 1989;338:383–384.

    Article  CAS  Google Scholar 

  7. Coggeshall KM, McHugh JC, Altman A. Predominant expression and activation-induced tyrosine phosphorylation of phospholipase C-g2 in B lymphocytes. Proc Natl Acad Sci USA 1992; 89:5660–5664.

    Article  PubMed  CAS  Google Scholar 

  8. June CH, Fletcher MC, Ledbetter JA, Samelson LE. Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J Immunol 1990; 144:1591–1599.

    PubMed  CAS  Google Scholar 

  9. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science (Wash. DC) 1992;258: 607–614.

    Article  CAS  Google Scholar 

  10. Berridge MJ. Inositol trisphosphate and calcium signaling. Nature (Lond) 361:315-325.

  11. Wölfing C, Rabinowitz JD, Beeson C, Sjaastad MD, McConnell HM, Davis MM. Kinetics and extent of T cell activation as measured with the calcium signal. J Exp Med 1997;185:1815–1825.

    Article  Google Scholar 

  12. Smith JA, Tso JY, Clark MR, Cole MS, Bluestone JA. Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy. J Exp Med 1997;185:1413–1422.

    Article  PubMed  CAS  Google Scholar 

  13. Vassilopoulos D, Kovacs B, Tsokos GC. TCR/CD3 complexmediated signal transduction pathway in T cells and T cell lines from patients with systemic lupus erythematosus, J Immunol 1995; 155:2269–2281.

    PubMed  CAS  Google Scholar 

  14. Liossis SN, Ding XZ, Dennis GJ, Tsokos GC. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor ζ chain. J Clin Invest 1998;101:1448–1457.

    PubMed  CAS  Google Scholar 

  15. Kammer GM, Khan I, Malemud C. Deficient type I protein kinase A isozyme activity in systemic lupus erythematosus T lymphocytes. J Clin Invest 1994;94:422–430.

    PubMed  CAS  Google Scholar 

  16. Tada Y, Nagasawa K, Yamauchi Y, Tsukamoto H, Niho Y. A defect in the protein kinase C system in T cells from patients with systemic lupus erythematosus. Clin Immunol Immunopathol 1991;60: 220–231.

    Article  PubMed  CAS  Google Scholar 

  17. Portales-Perez D, Gonzalez-Amaro R, Abud-Mentoza C, Sanchez-Armass S. Abnormalities in CD69 expression, cytosolic pH and Ca2+ during activation of lymphocytes from patients with systemic lupus erythematosus. Lupus 1997;6:48–56.

    Article  PubMed  CAS  Google Scholar 

  18. Liossis SNC, Kovacs B, Dennis J, Kammer GM, Tsokos GC. B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest 1996;98:2549–2557.

    PubMed  CAS  Google Scholar 

  19. Carter RH, Fearon DT. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 1992;256:105–107.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson JG, Ratnoff WD, Schur PH, Fearon DT. Decreased expression of the C3b/C4b receptor (CR1) and the C3d receptor (CR2) on B lymphocytes and of CR1 on neutrophils of patients with systemic lupus erythematosus. Arthritis Rheum 1986;29:739–747.

    Article  PubMed  CAS  Google Scholar 

  21. Marquart HV, Svendsen A, Rasmussen JM, Niesen CH, Junker P, Svehag SE, Leslie RG. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 1995; 101:60–65.

    Article  PubMed  CAS  Google Scholar 

  22. Muta T, Kurosaki T, Misulovin Z, Sanchez M, Nussenzweig MC, Ravetch JV. A 13-amino-acid motif in the cytoplasmic domain of FcgRIIB modulates B-cell receptor signalling. Nature 1994; 368:70–73.

    Article  PubMed  CAS  Google Scholar 

  23. O’Rourke L, Tooze R, Fearon DT. Co-receptors of B lymphocytes. Curr Opin Immunol 1997; 9:324–329.

    Article  PubMed  CAS  Google Scholar 

  24. O’Keefe TL, Williams GT, Davies SL, Neuberger MS. Hyperresponsive B cells in CD22-deficient mice. Science 1996;274:798–801.

    Article  PubMed  CAS  Google Scholar 

  25. Cyster JG, Goodnow CC. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 1995:2:13–24.

    Article  PubMed  CAS  Google Scholar 

  26. Ono M, Boland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcgRIIB. Nature 1996;383:263–266.

    Article  PubMed  CAS  Google Scholar 

  27. Takai T, Ono M, Hikida M, Ohmori H, Ravetch JV. Augmerited humoral and anaphylactic responses in FcgRII-deficient mice. Nature 1996;379:346–349.

    Article  PubMed  CAS  Google Scholar 

  28. Salmon JE, Millard S, Schachter LA, Arnett FC, Ginzler EM, Gourley MF, Ramsey-Goldman R, Peterson MGE, Kimberly RP. FcgammaRIIA alleles are heritable risk factors for lupus nephritis. J Clin Invest 1996;97: 1348–1354.

    PubMed  CAS  Google Scholar 

  29. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP. A novel polymorphism of FcgRIIIa (CD 16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 1997;100: 1059–1070.

    PubMed  CAS  Google Scholar 

  30. Latinis KM, Carr LL, Peterson EJ, Norian LA, Eliason SL, Koretzky GA. Regulation of CD95 (Fas) ligand expression by TCR-mediated signaling events. J Immunol 1997;158:4602–4611.

    PubMed  CAS  Google Scholar 

  31. Kovacs B, Liossis SNC, Dennis JG, Tsokos GC. Increased expression of functional Fas ligand in activated T cells from patients with systemic lupus erythematosus. Autoimmunity 1997;In press.

  32. Alcocer-Varela J, Alarcon-Segovia D. Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus. J Clin Invest 1982;69: 1388–1392.

    PubMed  CAS  Google Scholar 

  33. Noelle RJ, Ledbetter JA, Aruffo A. CD40 and its ligand, an essential ligand-receptor pair for thymusdependent B-cell activation. Immunol Today 1992;13:431–433.

    Article  PubMed  CAS  Google Scholar 

  34. Nusslein HG, Frosch KH, Woith W, Lane P, Kalden JR, Manger B. Increase of intracellular Ca is the essential signal for the expression of CD40L. Eur J Immunol 1996; 26:840–850.

    Article  Google Scholar 

  35. Banchereau J, Bazan F, Blanchard D, Brière F, Galizzi JP, van Kooten C, Liu YJ, Rousset F, Saeland S. The CD40 antigen and its ligand. Annu Rev Immunol 1994;12:881–922.

    Article  PubMed  CAS  Google Scholar 

  36. Cassilas A, Hanekom C, Williams K, Katz R, Nel AE. Stimulation of B-cells via the membrane immunoglobulin receptor or with phorbol myristate 13-acetate induces tyrosine phosphorylation and activation of a 42 kDa microtubule-associated protein-2 kinase. J Biol Chem 1991;266:19,088–19,094.

    Google Scholar 

  37. Li YY, Baccam M, Waters SB, Pessin JE, Bishop GA, Koretzky GA. CD40 ligation results in protein kinase C-independent activation of ERK and JNK in resting murine splenic B cells. J Immunol 1996;157:1440–1447.

    PubMed  CAS  Google Scholar 

  38. Sutherland CL, Heath AW, Pelech SL, Young PR, Gold MR. Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases by CD40 and the B cell receptor. J Immunol 1996; 157:3381–3390.

    PubMed  CAS  Google Scholar 

  39. Koshy M, Berger D, Crow MK. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J Clin Invest 1996;98:826–837.

    PubMed  CAS  Google Scholar 

  40. Grammer AC, Bergman MC, Miura Y, Fujita K, Davis LS, Lipsky PE. The CD40L expressed by human B cells costimulates B cell responses. J Immunol 1995; 154:4996–5010.

    PubMed  CAS  Google Scholar 

  41. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996; 97:2063–2073.

    Article  PubMed  CAS  Google Scholar 

  42. Ware CF, Crowe PD, Vanarsdale TL, Grayson MH, Jerzy R, Smith CA, Goodwin RG. Tumor necrosis factor (TNF) receptor family expression in T lymphocytes. Differential regulation of the type I TNF receptor during activation of resting and effector T cells. J Immunol 1991;147:4229–4238.

    PubMed  CAS  Google Scholar 

  43. Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 1994;77:727–736.

    Article  PubMed  Google Scholar 

  44. Durie FH, Fava RA, Foy TM, Aruffo A, Ledbetter JA, Noelle RJ. Prevention of collageninduced arthritis with an antibody to gp39, the ligand for CD40. Science 1993;261:1328–1330.

    Article  PubMed  CAS  Google Scholar 

  45. Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJ, Claassen E. CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 1996;93:2499–2504.

    Article  PubMed  CAS  Google Scholar 

  46. Griggs ND, Agersborg SS, Noelle RJ, Ledbetter JA, Linsley PS, Tung KS. The relative contribution of the CD28 and gp39 costimulatory pathways in the clonal expansion and pathogenic acquisition of selfreactive T cells. J Exp Med 1996; 183:801–810.

    Article  PubMed  CAS  Google Scholar 

  47. Mohan C, Shi Y, Laman JD, Datta SK. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 1995;154:1470–1480.

    PubMed  CAS  Google Scholar 

  48. Lenschhow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Ann Rev Immunol 1996; 14:233–258.

    Article  Google Scholar 

  49. Bluestone JA. Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol 1997; 158: 1989–1993.

    PubMed  CAS  Google Scholar 

  50. Sfikakis PP, Via CS. Expression of CD28, CTLA4, CD80, and CD86 molecules in patients with autoimmune rheumatic diseases. Clin Immunol Immunopathol 1997;83:195–198.

    Article  PubMed  CAS  Google Scholar 

  51. Alvarado C, Alcocer-Varela J, Liorente L, Richaud-Patin Y, Cerbon M, Alarcon-Segovia D. Effect of CD28 antibody on T cells from patients with systemic lupus erythematosus. J Autoimmun 1994; 7:763–773.

    Article  PubMed  CAS  Google Scholar 

  52. Kaneko H, Saito K, Hashimoto H, Yagita H, Okumura K, Azuma M. Preferential elimination of CD28+ T cells in systemic lupus erythematosus (SLE) and the relation with activation-induced apoptosis. Clin Exp Immunol 1996; 106: 218–229.

    Article  PubMed  CAS  Google Scholar 

  53. Sfikakis PP, Oglesby R, Sfikakis P, Tsokos GC. B7/BB1 provides an important costimulatory signal for CD3-mediated T lymphocyte proliferation in patients with Systemic Lupus Erythematosus. Clin Exp Immunol 1994;96:8–13.

    Article  PubMed  CAS  Google Scholar 

  54. Sfikakis PP, Zografou E, Viglis V, Iniotaki-Theodoraki A, Piskontaki I, Tsokos GC, Sfikakis P, Choremi-Papadopoulou H. CD28 expression on T cell subsets in vivo and CD28-mediated T cell response in vitro in patients with rheumatoid arthritis. Arthritis Rheum 1995;38:649–654.

    Article  PubMed  CAS  Google Scholar 

  55. Mauri D, Wyss-Coray T, Gallati H, Pichler WJ. Antigen-presenting T cells induce the development of cytotoxic CD4+ T cells. J Immunol 1995;155:118–127.

    PubMed  CAS  Google Scholar 

  56. Folzenlogen D, Hofer MF, Leung DYM, Freed JH, Newell MK. Analysis of CD80 and CD86 expression on peripheral blood B lymphocytes reveals increased expression of CD86 in lupus patients. Clin Immunol Immunopathol 1997;83:199–204.

    Article  PubMed  CAS  Google Scholar 

  57. Roth R, Nakamura T, Mamula MJ. B7 costimulation and autoantigen-specificity enable B cells to activate autoreactive T cells. J Immunol 1996; 157:2924–2931.

    PubMed  CAS  Google Scholar 

  58. Tsokos GC, Kovacs B, Sfikakis PP, Theocharis S, Vogelgesang S, Via CS. Defective antigen-presenting cell function in patients with systemic lupus erythematosus. Role of the B7-1 (CD80) costimulatory molecule. Arthritis Rheum 1996;39:600–609.

    Article  PubMed  CAS  Google Scholar 

  59. Fox DA, Millard JA, Treisman J, Zeldes W, Bergman A, Depper J, Dunne R, McCune WJ. Defective CD2 pathway T cell activation in systemic lupus erythematosus. Arthritis Rheum 1991;34:561–571.

    Article  PubMed  CAS  Google Scholar 

  60. Horwitz DA, Tang FL, Stimmler MM, Oki A, Gray JD. Decreased T cell response to anti-CD2 in systemic lupus erythematosus and reversal by anti-CD28. Arthritis Rheum 1997;40:822–833.

    Article  PubMed  CAS  Google Scholar 

  61. Sfikakis PP, Anagnostopoulos J, Karameris A, et al. Expression of the CD80 (B7/BB1) T cell costimulatory molecule in the skin of patients with systemic sclerosis. Arthritis Rheum 1994;37(suppl 9), S 265.

    Google Scholar 

  62. Denfeld RW, Kind P, Sontheimer RD, Schopf E, Simon JC. In situ expression of B7 and CD28 receptor families in skin lesions of patients with lupus erythematosus. Arthritis Rheum 1997;40:814–821.

    Article  PubMed  CAS  Google Scholar 

  63. Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science 1994;265: 1225–1227.

    Article  PubMed  CAS  Google Scholar 

  64. Theofilopoulos AN. The basis of autoimmunity:PartII Genetic predisposition. Immunol Today 1995;16:150–159.

    Article  PubMed  CAS  Google Scholar 

  65. Drake CG, Babcock SK, Palmer E, Kotzin BL. Genetic analysis of the NZB contribution to lupuslike renal disease:multiple genes that operate in a threshold manner. Proc Natl Acad Sci USA 1994; 91:4062–4066.

    Article  PubMed  CAS  Google Scholar 

  66. Morel L, Rudofsky UH, Longmate JA, Schiffenbauer J, Wakeland EK. Polygenic control of susceptibility to murine systemic lupus erythematosus. Immunity 1994;1: 219–229.

    Article  PubMed  CAS  Google Scholar 

  67. Kono DH, Burlingame RS, Owens D, Kuramochi A, Balderas RS, Balomenos D, Theofilopoulos AN. Lupus susceptibility loci in New Zealand mice. Proc Natl Acad Sci USA 1994;91:10,168–10,172.

    Article  CAS  Google Scholar 

  68. Mohan C, Morel L, Yang P, Wakeland EK. Genetic dissection of systemic lupus erythematosus pathogenesis. Sle2 on murine chromosome 4 leads to B cell hyperactivity. J Immunol 1997; 159:454–465.

    PubMed  CAS  Google Scholar 

  69. Morel L, Mohan C, Yu Y, Croker BP, Tian N, Deng A, Wakeland EK. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J Immunol 1997;158:6019–6028.

    PubMed  CAS  Google Scholar 

  70. Tsao BP, Cantor RM, Kalunian KC, Chen CJ, Badsha H, Singh R, Wallace DJ, Kitridou RC, Chen SL, Shen N, Song YW, Isenberg DA, Yu CL, Hahn BH, Rotter JI. Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 1997;99:725–731.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liossis, SN.C., Sfikakis, P.P. & Tsokos, G.C. Immune cell signaling aberrations in human lupus. Immunol Res 18, 27–39 (1998). https://doi.org/10.1007/BF02786511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786511

Key Words

Navigation