Skip to main content

Advertisement

Log in

The paradigm of Th1 and Th2 cytokines

Its Relevance to Autoimmunity and Allergy

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

In the past few years, considerable evidence has accumulated to suggest the existence of functionally polarized responses by the CD4+ T helper (Th)—and the CD8+ T cytotoxic (Tc)—cell subsets that depend on the cytokines they produce. The Th1 and Th2 cellular immune response provide a useful model for explaining not only the different types of protection, but also the pathogenic mechanisms of several immunopathological disorders. The factors responsible for the polarization of specific immune response into a predominant Th1 or Th2 profile have been extensively investigated in mice and humans. Evidence has accumulated from animal models to suggest that Th1type lymphokines are involved in the genesis of organ-specific autoimmune diseases, such as experimental autoimmune uveitis, experimental allergic encephalomyelitis, or insulin-dependent diabetes mellitus. Accordingly, data so far available in human diseases favor a prevalent Th1 lymphokine profile in target organs of patients with organ-specific autoimmunity. By contrast, Th2-cell predominance was found in the skin of patients with chronic graft-versus host disease, progressive systemic sclerosis, systemic lupus erythematosus, and allergic diseases. The Th1/Th2 concept suggests that modulation of relative contribution of Th1 or Th2-type cytokines regulate the balance between protection and immunopathology, as well as the development and/or the severity of some immunologie disorders. In this review, we have discussed the paradigm of Th1 and Th2 cytokines in relation to autoimmunity and allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fresno M, Kopf M, Rivas L: Cytokines and infectious diseases. Immunol Today 1997;18:56–58.

    Article  PubMed  CAS  Google Scholar 

  2. Mosmann TR, Cherwinski II, Bond MW, Giedlin MA, Coffman RI: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348–2357.

    PubMed  CAS  Google Scholar 

  3. Romagnani S: The Th1/Th2 paradigm. Immunol Today 1997;18:263–266.

    Article  PubMed  CAS  Google Scholar 

  4. Rook GA, Stanford JL: Give us this day our daily germs. Immunol Today 1998;19:113–116.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen IR: The Th1/Th2Dichotomy, hsp60 autoimmunity, and type I diabetes. Clin Immunol Immunopathol 1997;84:103–106.

    Article  PubMed  CAS  Google Scholar 

  6. Fowell D, McKnight AJ, Powrie F, Dyke R, Mason D: Subsets of CD4+ T cells and their role in the induction and prevention of autoimmunity. Immunol Rev 1991;123:37–64.

    Article  PubMed  CAS  Google Scholar 

  7. Romagnani S: Human Th1 and Th2: Doubt on more. Immunol Today 1991;12:256–257.

    Article  PubMed  CAS  Google Scholar 

  8. Allen JE, Maizels RM: Th1-Th2: Reliable paradigm or dangerous Fig. 1. Diagrammatic representation of Th1.Th2 cytokines: Induction, Polarization and their role. * = Two types of CD8 cells are also called Tc1 and Tc2, X = inhibition.dogma? Immunol Today 1997;18:387–392.

    Article  PubMed  CAS  Google Scholar 

  9. Constant SL, Bottomly K: Induction of Th1 & Th2 CD4+ T cell responses: The alternative approach. Annu Rev Immunol 1997;15:297–322.

    Article  PubMed  CAS  Google Scholar 

  10. Seder RA, Paul WE: Acquisition of lymphokine producing phenotype by CD4+ T cells. Annu Rev Immunol 1994;12:635–674.

    Article  PubMed  CAS  Google Scholar 

  11. Del Prete G: The concept of type-1 and type-2 helper T cells and their cytokines in humans. Int Rev Immunol 1998;16:427–455.

    PubMed  Google Scholar 

  12. Rincon M, Anguita J, Nakamura T, Fikriz, E, Fravell RA: Interleukin-6 (IL-6) direct the differentiation of IL-4 producing CD4+ T cells. J Exp Med 1997;185:461–469.

    Article  PubMed  CAS  Google Scholar 

  13. Hilkens C, Snijders A, Vermeulen H, Vander Meide P, Wierenga E, Kapsenberg M: Accessory cellderived interleukin-12 and prostaglandin E2 determine the level of interferon gamma produced by activated human CD4+ cells. Ann New York Acad Sci 1996;759:349–350.

    Article  Google Scholar 

  14. Martin R, Ruddle NH, Reingold S, Hafler DA: T helper cell differentiation in multiple sclerosis and autoimmunity. Immunol Today 1998;19:495–498.

    Article  PubMed  CAS  Google Scholar 

  15. Jacobson NG, Szabo SJ, Weber-Nordt RM, Zhang Z, Schoeiber RD, Parnell JE, Jr., Murphy KM: Interleukin 12 signaling in T helper cell type I (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat) 3 and 4. J Exp Med 1995;181:1755–1762.

    Article  PubMed  CAS  Google Scholar 

  16. Kaplan MH, Sum YL, Hoey T, Grusby MJ: Impaired IL-12 responses and enhanced development of Th2 cells in Stat 4 deficient mice. Nature 1996;382:174–177.

    Article  PubMed  CAS  Google Scholar 

  17. Hou J, Schindler U, Henzel WJ, Ho TG, Brasseur M, MacKnight SL: An interleukin-4 induced transcription factor:IL-4 Stat. Science 1994;265:1701–1706.

    Article  PubMed  CAS  Google Scholar 

  18. Takeda K, Tanaku T, Shi W, Matsumoto M, Minami M, Kashiwamura S, Yoshida N, Kishimoto T, Akira S: Essential role of stat 6 in IL-4 signaling. Nature 1996;380: 627–630.

    Article  PubMed  CAS  Google Scholar 

  19. Lane P, Flynn S, Walker L, Raykundalia C, Broker T, Gulbrason-Judge A: CD4 cytokine differentiation who and what decides? Immunologist 1988;6:182–185.

    Google Scholar 

  20. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH: B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 development pathways: Application to autoimmune disease therapy. Cell 1995;80:707–718.

    Article  PubMed  CAS  Google Scholar 

  21. Romagnani S: Th1 and Th2 in human diseases. Clin Immunol Immunopathol 1996;80:225–235.

    Article  PubMed  CAS  Google Scholar 

  22. Seder RA, Boulay JL, Finkelman F, Barbier S, Ben-Sasson SL, Le Gros GG, Paul WE: CD8+ T cells can be primedin vitro to produce IL-4. J Immunol 1992;148:1652–1656.

    PubMed  CAS  Google Scholar 

  23. Caton AJ, Swartzentruber JR, Kuhl AL, Cading SR, Stark SE: Activation and negative selection of functionally distinct subset of antibody secreting cells by Influenza haemagglutinin as a viral and a neo-self antigen. J Exp Med 1996;183:13–26.

    Article  PubMed  CAS  Google Scholar 

  24. Luther SA, Gulbranson-Judge A, Acha-Orbea H, Mac Lennan ICM: Viral superantigen drives extrafollicular and follicular B cell differentiation leading to virusspecific antibody production. J Exp Med 1997;185:551–562.

    Article  PubMed  CAS  Google Scholar 

  25. Esser C, Radbrunch A: Immunoglobulin class switching: Molecular and cellular analysis. Annu. Rev Immunol 1990;8:717–735.

    Article  PubMed  CAS  Google Scholar 

  26. Martin RM, Lew AM: Is IgG2a a good Th1 marker in mice? Immunol Today 1998;19:49.

    Article  PubMed  CAS  Google Scholar 

  27. Snapper CM, Paul WE: Interferon gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 1987;236:944–947.

    Article  PubMed  CAS  Google Scholar 

  28. Martin RM, Silva A, Lew AM: The Igh-1 sequence of the nonobese diabetic (NOD) mouse assigns it to the IgG2c isotype. Immunogenetics 1997;46:167–168.

    Article  PubMed  CAS  Google Scholar 

  29. Duret P, Sheela R, Pelletier L: Th1 and Th2 cells in autoimmunity. Clin Exp Immunol 1995;101(S):9–12.

    Google Scholar 

  30. O’Garra A, Steinman L, Gijbels K: CD4+ T cell subsets in autoimmunity. Curr Opin Immunol 1997;9:872–873.

    Article  PubMed  CAS  Google Scholar 

  31. Liblau RS, Singer SM, McDevitt HO: Th1 and Th2 CD4+ T cells in the pathogenesis of organ specific autoimmune diseases. Immunol Today 1995;16:34–38.

    Article  PubMed  CAS  Google Scholar 

  32. Battelli E, Das MP, Howard ED, Weiner HL, Sobel RA, Kuchroo VK: IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10 and IL-4 deficient and transgenic mice. J Immunol 1998:161:3299–3306.

    Google Scholar 

  33. Lafaille JJ, Keere FV, Hsu Al, Baron JL, Haas W, Raine CS, Tonegawa S: Myelin basic protein-specific T helper2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 1997;186:307–312

    Article  PubMed  CAS  Google Scholar 

  34. Liblau R, Steinman L, Brocke S: Experimental autoimmune encephalomyelitis in IL-4-deficient mice. Int Immunol 1997;9:799–803.

    Article  PubMed  CAS  Google Scholar 

  35. Cannela B, Gao YL, Brosnan C, Raine CS: IL-10 fails to abrogate experimental autoimmune encephalomyelitis. J Neurosci 1996;45:735–746.

    Article  Google Scholar 

  36. Xu H, Rizzo H, Silver PB, Caspi RR: Uveitogenicity is associated with a Th1-like lymphokine profile: Cytokine dependent modulation of early and committed effector T cells in experimental autoimmune uveitis. Cell Immunol 1997;178:69–78.

    Article  PubMed  CAS  Google Scholar 

  37. Saoudi A, Kuhn J, Huygen K, De-Kozak Y, Velu T, Goldman M, Duret P, Bellon B: Th2 activated cells prevent experimental autoimmune uveoretinitis, a Thl dependent autoimmune disease. Eur J Immunol 1993;23:3096–3103.

    Article  PubMed  CAS  Google Scholar 

  38. Caspi RR, Silver PB, Chan CC, Sun B, Agarwal RK, Wells J, Oddo S, Fujino Y, Najafian F, Wilder RL: Genetic susceptibility to experimental autoimmune uveoretinitis in the rats associated with an elevated Th1 response. J Immunol 1996;157:2668–2675.

    PubMed  CAS  Google Scholar 

  39. Rizzo LV, Xuh, Chan CC, Wiggert B, Caspi RR: IL-10 has a protective role in experimental autoimmune uveoretinitis. Int Immunol 1998;10:807–814.

    Article  PubMed  CAS  Google Scholar 

  40. Tarrant TK, Silver PB, Chan CC, Wiggert B, Caspi RR: Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis. J Immunol 1998;161:122–127.

    PubMed  CAS  Google Scholar 

  41. Jones LS, Rizzo LV, Agarwal RK, Tarrant TK, Chan CC, Wiggert B, Caspi RR: Interferon gamma-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J Immunol 1997:158:5997–6005.

    PubMed  CAS  Google Scholar 

  42. Caspi RR, Chan CC, Grubbs BG, Silver PB, Wiggert B, Parsa CF, Bahmanyar S, Billiau A, Herremans H: Endogenous systemic IFN-γ has a protective effect against ocular autoimmunity in mice. J Immunol 1994;52:890–899.

    Google Scholar 

  43. Caspi RR, Silver PB, Agarwal RK, Rizzo LV, Chan CC, Tarrant TK: Systemic administration of IL-12 protects mice from experimental autoimmune uveitis through a mechanism involving IFN-γ. J Allergy Clin Immunol 1997;99:S368.

    Google Scholar 

  44. Sun B, Rizzo LV, Sun SH, Chan CC, Wiggert B, Wilder RL, Caspi RR: Genetic susceptibility to experimental autoimmune uveitis involves more than a predisposition to generate a Thelper-1-like or a T helper-2-like response. J Immunol 1997;159:1004–1111.

    PubMed  CAS  Google Scholar 

  45. Heurtier AH, Biotard C: T cell regulating in murine and human autoimmune diabetes: The role of Th1 and Th2 cells. Diabetes Metab 1997;23:377–385.

    PubMed  CAS  Google Scholar 

  46. Pakala SV, Kurrer MO, Katz JD: T helper 2 (Th2) T cells induce acute pancreatitis and diabetes in immune compromised nonobese diabetic (NOD) mice. J Exp Med 1997;186:299–306.

    Article  PubMed  CAS  Google Scholar 

  47. Pennline KJ, Roque-Gaffney E, Monahan E: Recombinant human IL-10 prevents the onset of diabetes in the nonobese diabetic mouse. Clin Immunol Immunopathol 1994;71:169–175.

    Article  PubMed  CAS  Google Scholar 

  48. Wogensen L, Lee M-S, Sarvetnick N: Production of interleukin 10 by islet cells accelerates immune mediated destruction of β cells in non obese diabetic mice. J Exp Med 1994;179:1379–1384.

    Article  PubMed  CAS  Google Scholar 

  49. Shehadeh N, Calcinaro F, Bradley BJ, Bruchlim I, Vardi P, Lafferty KJ: Effect of adjuvant therapy on development of diabetes in mouse and man. Lancet 1994;343:706–707.

    Article  PubMed  CAS  Google Scholar 

  50. Balasa B, Savetnick N: The paradoxical effects of interleukin-10 in the immunoregulation of autoimmune diabetes. J Autoimmunity 1997;9:283–286.

    Article  Google Scholar 

  51. Williams RO, Feldmann M, Maini RN: Anti-tumor necrosis factor ameliorates joint disease in murine-collagen-induced arthritis. Proc Natl Acad Sci USA 1992;89:9784–9788.

    Article  PubMed  CAS  Google Scholar 

  52. Horsfall AC, Bulter DM, Marinova L, Warden PJ, William RO, Maini RM, Feldman M: Suppression of collagen-induced arthritis by continuous administration of IL-4. J Immunol 1997;159:5687–5696.

    PubMed  CAS  Google Scholar 

  53. De Franco M, Gille-Perramant M-F, Mevel J-C, Coudere J: T helper subset involvement in two high antibody responder lines of mice (Biozzi mice): HI (susceptible) and H II (resistant) to collagen induced arthritis. Eur J Immunol 1995;25:132–136.

    Article  PubMed  Google Scholar 

  54. Kageyama Y, Koide Y, Yoshida A, Uchijima M, Arai T, Mijamoto S, Ozeki T, Hijoshi M, Kushida K, Inoue T: Reduced susceptibility to collagen-induced arthritis in mice deficient in IFN-gamma receptor. J Immunol 1998;161:1542–1548.

    PubMed  CAS  Google Scholar 

  55. Romball CG, Weigle WO: Transfer of experimental autoimmune thyroiditis with T cell clones. J Immunol 1987;138:1092–1098.

    PubMed  CAS  Google Scholar 

  56. Stull SJ, Sharp GC, Kyriakos M, Bickell JT, Braley-Mullen H: Induction of granulomatous experimental autoimmune thyroiditis in mice with in vitro activated effector T cells and anti-IFN-γ antibody. J Immunol 1992;149:2219–2226.

    PubMed  CAS  Google Scholar 

  57. Jacob CO, van der Meide PH, McDevitt HO: In vivo treatment of (NZB X NZW)F1 lupus-like nephritis mice with monoclonal antibody to γ-interferon. J Exp Med 1987;166:798–803.

    Article  PubMed  CAS  Google Scholar 

  58. Ozmen L, Roman D, Fountoulakis M, Schmid G, Ryffel B, Garotta G: Experimental therapy of systemic lupus erythematosus: The treatment of NZB/W mice with mouse soluble interferon-γ receptor inhibits the onset of glomerulonephritis. Eur J Immunol 1995; 25:6–12.

    Article  PubMed  CAS  Google Scholar 

  59. Finck BK, Chan B, Wofsy D: Interleukin 6 promotes murine lupus in NZB/NZW FI mice. J Clin Invest 1994;94:585–591.

    PubMed  CAS  Google Scholar 

  60. Ishida H, Muchamuel T, Sakaguchi S, Menon S, Howard M: Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W mice. J Exp Med 1994;179:305–310.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA: Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994;179:973–984.

    Article  PubMed  CAS  Google Scholar 

  62. Tang L, Benjaponpitak S, Dekruyff RM, Umetsu DT: Reduced prevalence of allergic disease in patients with multiple sclerosis is associated with enhanced IL-12 production. J Allergy Clin Immunol 1998;102:428–435.

    Article  PubMed  CAS  Google Scholar 

  63. Windhagen A, Anderson DE, Carrizosa A, Balashov K, Weiner HL, Hafler DA: Cytokine secretion of myelin basic protein reactive T cells in patients with multiple sclerosis. J Neuroimmunol 1998;91:1–9.

    Article  PubMed  CAS  Google Scholar 

  64. Vandevyver C, Motmans K, Stinissen P, Zhang J, Raus J: Cytokine m-RNA profile of myelin basic protein reactive T cell clones in patients with multiple sclerosis. Autoimmunity 1998;8:77–89.

    Google Scholar 

  65. Hohnoki K, Inoue A, Koh CS: Elevated serum levels of IFN-γ, IL-4 and TNF-α/unelevated serum levels of IL-10 in patients with demyelinating diseases during the acute stage. J Neuroimmunol 1998;87:27–32.

    Article  PubMed  CAS  Google Scholar 

  66. Link H: The cytokine storm in multiple sclerosis. Mult Scler 1998;4:12–15.

    Article  PubMed  CAS  Google Scholar 

  67. Panitch HS, Hirsch RL, Schindler J, Johnson KP: Treatment of multiple sclerosis with γ interferon: Exacerbations associated with activation of the immune system. Neurology 1987;37:1097–1102.

    PubMed  CAS  Google Scholar 

  68. Laman JD, Thompson EJ, Kappos L: Balancing the Th1/Th2 in multiple sclerosis. Immunol Today 1998;19:489–490.

    Article  PubMed  CAS  Google Scholar 

  69. Kusaba M, Honda J, Fukuda T, Oizumi K: Analysis of type 1 and type 2 T cells in synovial fluid and peripheral blood of patients with rheumatoid arthritis. J Rheumatol 1998;25:1466–1471.

    PubMed  CAS  Google Scholar 

  70. Elliott MJ, Maini RN, Feldmann M, Fox-Long A, Charles P, Katsikis P, Brennan M, Walker J, Biji H, Ghrayeb J, Woody J: Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to TNF-α, safety, clinical efficacy and regulation of acute phase response. Arthritis Rheum 1993;36:1681–1686.

    Article  PubMed  CAS  Google Scholar 

  71. Cope AP, Londei M, Chu NR, Cohen SBA, Elliott MJ, Brennan F, Maini RN, Feldmann M: Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex: Reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J Clin Invest 1994;94:749–760.

    PubMed  CAS  Google Scholar 

  72. Verhoef CM, Van Roon JA, Vianen ME, Bruijnzeel-Koomen CA, Lafeber FP, Bijlsma JW: Mutual antagonism of rheumatoid arthritis and hay fever; a role for type 1/type-2 T cell balance. Ann Rheum Dis 1998;75:275–280.

    Google Scholar 

  73. Raziuddin S, Bahabri S, Al-Dalaan A, Siraj AK, Al-Sedairy S: A mixed Th1/Th2 cell cytokine response predominates in systemic onset juvenile rheumatoid arthritis: Immunoregulatory IL10 function. Clin Immunol Immunopathol 1998;86:192–198.

    Article  PubMed  CAS  Google Scholar 

  74. Del Prete G, Maggi E, Pizzolo G, Romagnani S: The cytokines and HIV infection: A complex and fascinating link. Immunol Today 1995;16:76–80.

    Article  PubMed  Google Scholar 

  75. Llorente L, Zou W, Levy Y, Richaud-Patin Y, Wijdenes J, Alcocer-Verela J, Morel-Fourrier B, Brouet J-C, Alarcon-Segovia D, Galanaud P, Emilie D: Role of interleukin-10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med 1995;181:839–844.

    Article  PubMed  CAS  Google Scholar 

  76. Heusser CH, Brinkmann V: Immune response and pathophysiology of the allergic reaction. Ther Umsch 1994;51:14–18.

    PubMed  CAS  Google Scholar 

  77. Romagnani S: Lymphokine production by human T cells in disease states. Annu Rev Immunol 1994;12:227–257.

    Article  PubMed  CAS  Google Scholar 

  78. Maggi E: The Th1/Th2 paradigm in allergy. Immunotechnology 1998;3:233–244.

    Article  PubMed  CAS  Google Scholar 

  79. Umetsu DT, De Kruyff RH: Th 1 and Th2 CD4+ cells in the pathogenesis of allergic diseases. Proc Soc Exp Biol Med 1997;215:11–20.

    PubMed  CAS  Google Scholar 

  80. Zurawaski G, de Vries JE: Interleukin 13, an interleukin 4-like cytokine that acts on monocyte and B cells, but not on T cells. Immunol Today 1994;15:19–26.

    Article  Google Scholar 

  81. Kiniwa M, Gateley M, Chizzonite R, Fargeas C, Delespesse G: Recombinant interleukin 12 suppresses the synthesis of immunoglobulin E by interleukin 4 stimulated human lymphocytes. J Clin Invest 1992;90: 262–266.

    PubMed  CAS  Google Scholar 

  82. Yamamoto S, Hamasaki Y, Ishii E, Ichimaru T, Miyazaki G: Unbalanced production of interleukin-5 and interkeukin-2 in children with atopic dermatitis. Ann Allergy Asthma Immunol 1997;78:517–523.

    Article  PubMed  CAS  Google Scholar 

  83. Hamid Q, Nasser T, Minshall EM, Song YL, Boguniewicz M, Leung DY: In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol 1996;98: 225–231.

    Article  PubMed  CAS  Google Scholar 

  84. Thepen T, Langeveld-Wildschut EG, Bihari IC, van Wichen DF, van Reijsen FC, Mudde GC, Bruijnzeel-Koomen CA: Bi phasic response against aero allergen in atopic dermatitis showing a switch from an initial Th2 response to a Th1 response in situ: An immunocytochemical study. J Allergy Clin Immunol 1997;97: 828–837.

    Article  Google Scholar 

  85. Bohm I, Bauer R: Th1 cells, Th2 cells and atopic dermatitis. Hautartz 1997;48:223–227.

    CAS  Google Scholar 

  86. Sugimara K, Hashiguchi S, Takahashi Y, Hino K, Kurimoto M, Fukuda K, Ohyama M, Yamada G: Th1/Th2 response profiles to the major allergens Cry j 1 and Cry j 2 of Japanese cedar pollen. Allergy 1996;51: 732–740.

    Article  Google Scholar 

  87. Ebner C, Siemann U, Bohle B, Willheim M, Wiedermann U, Schenk S, Klotz F, Ebner H, Kraft D, Scheiner O: Immunological changes during specific immunotherapy of grass pollen allergy: Reduced lymphoproliferative responses to allergen and shift from Th2 to Th1 in T-cell clones specific for Ph1 p 1, a major grass pollen allergen. Clin Exp Allergy 1997;27:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  88. Laan MP, Baert MR,Vrendendaal AE, Savelkoul HF: Differential mRNA expression and production of interleukin-4 and interferon-γ in stimulated peripheral blood mononuclear cells of house-dust mite-allergic patients. Eur Cytokine Netw 1998;9:75–84.

    PubMed  CAS  Google Scholar 

  89. Munoz-Bellido FJ, Monteserin FJ, Escribano MM, Delgad J, Velazquez E, Conde J: Effect of seasonal exposure to pollen on nonspecific interleukin-4, interleukin-5, and interferon-γ in vitro release by peripheral blood mononuclear cells from subjects with pollinosis. Allergy 1998;53:420–5.

    Article  PubMed  CAS  Google Scholar 

  90. Probst P, Kuntzlin D, Fleischer B:Th2-type infiltrating T cells in nickel-induced contact dermatitis. Cell Immunol 1995;165:134–140

    Article  PubMed  CAS  Google Scholar 

  91. Crimi E, Gaffi D, Frittoli E, Borgonovo B, Burastero SE: Depletion of circulating allergen-specific Th2 lymphocytes after allergen exposure in asthma. J Allergy Clin Immunol 1997;99:788–797.

    Article  PubMed  CAS  Google Scholar 

  92. Noon L: Prophylactic inoculation against hay fever. Lancet 1991;i:1572–1573.

    Google Scholar 

  93. Bousqust J, Becker WM, Hejaoui A, Chanal CP, Lebel B, Dhivert H, Michel FB: Clinical and immunological reactivity of patients allergic to grass pollens and multiple pollen species. II. Efficacy of a double-blind placebo-controlled, specific immunotherapy with standardized extracts. J Allergy Clin Immunol 1991;89:43.

    Article  Google Scholar 

  94. Secrist H, Chelen CJ, Yan W, Marshall JD, Umetsu DT: Allergen immunotherapy decreases IL4 production in CD4+ T cells from allergic individuals. J Exp Med 1993;178:2123–2130.

    Article  PubMed  CAS  Google Scholar 

  95. Hamid QA, Schotman E, Jacobson MR, Walker SM, Durham SR: Increases in IL-12 messenger RNA+ cells accompany inhibition of allergen-induced late skin responses after successful grass pollen immunotherapy. J Allergy Clin Immunol 1997;99:254–260.

    Article  PubMed  CAS  Google Scholar 

  96. Manetti R, Parronchi P, Guidizi MG, Piccini M-P, Maggi E, Trinchieri G, Romagnani S: Natural killer cell stimulatory factor interleukin 12 (IL-12) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4 producing Th cells. J Exp Med 1993; 177: 1199–1204.

    Article  PubMed  CAS  Google Scholar 

  97. Magnan A, Vervloet D. Allergies: determinants of T2 lymphocyte polarization and desensitization mechanisms. Rev Mal Respir 1997;14:173–181.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V.K., Mehrotra, S. & Agarwal, S.S. The paradigm of Th1 and Th2 cytokines. Immunol Res 20, 147–161 (1999). https://doi.org/10.1007/BF02786470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786470

Key words

Navigation