Skip to main content
Log in

Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminai anaerobic bacteriaFibrobacter succinogenes andRuminococcus flavefaciens

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of organic acids by two anaerobic ruminal bacteria,Fibrobacter succinogenes S85 andRuminococcus flavefaciens FD-1, was compared with glucose, cellobiose, microcrystalline cellulose, Walseth cellulose (acid swollen cellulose), pulped paper, and steam-exploded yellow poplar as substrates. The major end product produced byF. succinogenes from each of these substrates was succinate (69.5–83%), the principal secondary product was acetate (16–30.5%). Maximum succinate productivity ranged from 14.1 mg/L · h for steam-exploded yellow Poplar to 59.7 mg/L · h for pulped paper. ForR. flavefaciens, the major end product from cellobiose, microcrystalline cellulose, and acid-swollen Walseth cellulose was acetate (39–46%), pulped paper and steam-exploded yellow poplar yielded succinate (42–54%) as the major product. Maximum succinate productivity byR. flavefaciens ranged from 9.21 mg/L · h for cellobiose to 43.1 mg/L · h for pulped paper. In general, much less succinate was produced at a lower maximum productivity byR. flavefaciens than byF. succinogenes under similar fermentation conditions. The maximum succinate productivities by these two organisms are comparable to the previously reported value of 59 mg/L · h forAnderobiospirillum succiniciproducens grown on glucose and corn steep liquor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolin, B. (1979), inThe Global Carbon Cycle, John Wiley, New York.

    Google Scholar 

  2. Bashir, S. and Lee, S. (1994),Fuel Sci. Technol. Int. 12, 1427–1473.

    CAS  Google Scholar 

  3. Wyman, C. E. (1994),Bioresource Technol. 50, 3–16.

    Article  CAS  Google Scholar 

  4. Vallander, L. and Eriksson, K.-E. L. (1990),Adv. Biochem. Eng. 42, 63–73.

    CAS  Google Scholar 

  5. Schilling, L. B. (1995),FEMS Microbiol. Rev. 16, 101–110.

    Article  CAS  Google Scholar 

  6. Glassner, D. A., Elankovan, P., Beacom, D. R., and Berglund, K. A. (1995),Appl. Biochem. Biotechnol. 51/52, 73–82.

    Article  CAS  Google Scholar 

  7. Datta, R. (1992), US Patent 5,143,833.

  8. Glassner, D. A. and Datta, R. (1992), US Patent 5,143,834.

  9. Datta, R., Glassner, D. A., Jain, M. K., and Roy, J. R. (1990), Eur. Pat. Appl. 405–707.

  10. Turk, R. S. (1993), U.S. Patent 5,229,161.

  11. Datta, R. and Glassner, D. A. (1990), Eur. Pat. Appl. 389–103.

  12. Lemme, C. J. and Datta, R. (1987), Eur. Pat. Appl. 249–773.

  13. Lo, T., Engler, C. R., and Garcia, A. (1991), ASAE paper 916513.

  14. Weimer, P. J., Shi, Y., and Odt, C. L. (1991),Appl. Microbiol. Biotechnol. 36, 178–183.

    Article  CAS  Google Scholar 

  15. Weimer, P. J. (1993),Arch. Microbiol. 160, 288–294.

    Article  CAS  Google Scholar 

  16. Halliwell, G. and Bryant, M. P. (1963),J. Gen. Microbiol. 32, 441–448.

    CAS  Google Scholar 

  17. Stewart, C. S. and Bryant, M. P. (1988), inThe Rumen Microbiol. Ecosystem, (Hobson, P. N. ed.), Elsevier, London, pp. 21–75.

    Google Scholar 

  18. Miller, T. L. (1978),Arch. Microbiol. 117, 145–154.

    Article  CAS  Google Scholar 

  19. Hopgood, M. F. and Walker, D. J. (1967),Aust. J. Biol. Sci. 20, 165–182.

    CAS  Google Scholar 

  20. Hopgood, M. F. and Walker, D. J. (1967),Aust. J. Biol. Sci. 20, 183–192.

    CAS  Google Scholar 

  21. Hopgood, M. F. and Walker, D. J. (1969),Aust. J. Biol. Sci. 22, 1413–1424.

    CAS  Google Scholar 

  22. Samuelov, N. S., Lamed, R., Lowe, S., and Zeikus, J. G. (1991),Appl. Environ. Microbiol. 57, 3013–3019.

    CAS  Google Scholar 

  23. Allison, M. J., Bryant, M. P., and Doetsch, R. N. (1958),Science 128, 474–475.

    Article  CAS  Google Scholar 

  24. Walseth, C. S. (1952),TAPPI 35, 288–233.

    Google Scholar 

  25. Hostettler, F., Borel, E., and Deuel, H. (1951),Helv. Chim. Acta. 34, 2133–2139.

    Google Scholar 

  26. Bryant, M. P., Small, N., Bouma, C., and Robinson, I. M. (1958),J. Bacteriol. 76, 529–537.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokarn, R.R., Eiteman, M.A., Martin, S.A. et al. Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminai anaerobic bacteriaFibrobacter succinogenes andRuminococcus flavefaciens . Appl Biochem Biotechnol 68, 69–80 (1997). https://doi.org/10.1007/BF02785981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785981

Index Entries

Navigation