Skip to main content
Log in

Interleukin-10: a cytokine used by tumors to escape immunosurveillance

  • Review
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The mechanisms whereby malignant cells can elude the recognition of the immune system, by what is termed ‘immunological escape’, have attracted major attention of tumor immunologists during the past decade. In this review, the role of the immunosuppressive cytokine interleukin-10 (IL-10) will be discussed as a strategy used by tumors to avoid recognition by cytotoxic T lymphocytes (CTL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burnett FM.Immunological Surveillance. Pergamon Press: Oxford: Pergamon (Australia): Sydney 1970.

    Google Scholar 

  2. Rosenberg SAet al. Gene transfer into humans-immuno-therapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction.N Engl J Med 1990;323: 570–578.

    Article  CAS  PubMed  Google Scholar 

  3. Arienti Fet al. Adoptive immunotherapy of advanced melanoma patients with interleukin-2 (IL-2) and tumor-infiltrating lymphocytes selectedin vitro with low doses of IL-2.Cancer Immunol Immunother. 1993;36: 315–322.

    Article  CAS  PubMed  Google Scholar 

  4. Schwartzentruber DJet al. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2.J Clin Oncol 1994;12: 1475–1483.

    Article  CAS  PubMed  Google Scholar 

  5. Townsend AR, Gotch FM, Davey J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein.Cell 1985;42: 457–467.

    Article  CAS  PubMed  Google Scholar 

  6. Townsend ARet al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides.Cell 1986;44: 959–968.

    Article  CAS  PubMed  Google Scholar 

  7. Goldberg AL, Rock KL. Proteolysis, proteasomes and antigen presentation [Review].Nature 1992;357: 375–379.

    Article  CAS  PubMed  Google Scholar 

  8. Spies Tet al. Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer.Nature 1992;355: 644–646.

    Article  CAS  PubMed  Google Scholar 

  9. Neefjes JJ, Momburg F, Hammerling GJ. Selective and molecules is dependent on a putative peptide transporter heterodimer.Nature 1992;355: 644–646.

    Article  Google Scholar 

  10. Koopmann JO, Hammerling GJ, Momburg F. Generation, intracellular transport and loading of peptides associated with MHC class I molecules [Review].Curr Opin Immunol 1997;9: 80–88.

    Article  CAS  PubMed  Google Scholar 

  11. Ljunggren HGet al. Molecular analysis of H-2 deficient lymphoma lines: distinct defects in biosynthesis and association of MHC class I heavy chain and b2-microglobulin observed in cells with increased sensitivity to NK cell lysis.J Immunol 1989;142: 2911–2917.

    Article  CAS  PubMed  Google Scholar 

  12. Townsend A, Bodmer H. Antigen recognition by class I-restricted T lymphocytes [Review].Ann Rev Immunol 1989;7: 601–624.

    Article  CAS  Google Scholar 

  13. Cabrera Tet al. High frequency of altered HLA class I phenotypes in invasive breast carcinomas.Hum Immunol 1996;50: 126–134.

    Article  Google Scholar 

  14. Garrido Fet al. Natural history of HLA expression during tumor development.Immunol Today 1993;14: 491–499.

    Article  CAS  PubMed  Google Scholar 

  15. Cromme FV, Airey J, Heemels MT, Ploegh HL, Walboomers JMM. Loss of transporter protein, encoded by the TAP-2 gene, is highly correlated with loss of HLA expression in cervical carcinomas.J Exp Med 1994;179: 335–340.

    Article  CAS  PubMed  Google Scholar 

  16. Wolfel Tet al. Lysis of human melanoma cells by autologous cytolytic T cell clones. Identification of human histocompatibility leukocyte antigen A2 as a restrict element for three different antigens.J Exp Med 1989;170: 797–810.

    Article  CAS  PubMed  Google Scholar 

  17. Kono Ket al. Mechanisms of escape from CD8+ T-cell clones specific for the HER-2/neu proto-oncogene expressed in ovarian carcinomas: related and unrelated to decreased MHC class 1 expression.Int J Cancer 1997;70: 112–119.

    Article  CAS  PubMed  Google Scholar 

  18. Ruiz-Cabello F, Klein E, Garrido F. MHC antigens on human tumors [Review].Immunol Lett 1991;29: 181–189.

    Article  CAS  PubMed  Google Scholar 

  19. Ferrone S, Marincola FM. Loss of HLA class I antigens by melanoma cells: molecular mechanisms functional significance and clinical relevance [Review].Immunol Today 1995;16: 487–494.

    Article  CAS  PubMed  Google Scholar 

  20. Lehmann Fet al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection.Eur J Immunol 1995;25: 340–347.

    Article  CAS  PubMed  Google Scholar 

  21. Ikeda Het al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor.Immunity 1997;6: 199–208.

    Article  CAS  PubMed  Google Scholar 

  22. Seliger Bet al. Analysis of the MHC class I antigen presentation machinery in human embryonal carcinomas: evidence for deficiencies in TAP, LMP and MHC class I expression and their upregulation by IFN-gamma.Scand J Immunol 1997;46: 625–632.

    Article  CAS  PubMed  Google Scholar 

  23. Seliger Bet al. Analysis of the major histocompatibility complex class I antigen presentation machinery in normal and malignant renal cells: Evidence for deficiencies asosciated with transformation and progression.Cancer Res 1996;56: 1756–1760.

    CAS  PubMed  Google Scholar 

  24. Korkolopoulou P, Kaklamanis L, Pezzella F, Harris AL, Gatter KC. Loss of antigen-presenting molecules (MHC class I and TAP-1), in lung cancer.Br J Cancer 1996;73: 148–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaklamanis Let al. Loss of major histocompatibility complex-encoded transporter associated with antigen presentation (TAP) in colorectal cancer.Am J Pathol 1994;145: 505–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen HLet al. A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer.Nat Genet 1996;13: 210–213.

    Article  CAS  PubMed  Google Scholar 

  27. Mnich SJet al. Characterization of a monoclonal antibody that neutralizes the activity of prostaglandin E2.J Immunol 1995;155: 4437–4444.

    Article  CAS  PubMed  Google Scholar 

  28. Schrey MP, Patel KV. Protaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators.Br J Cancer 1995;72: 1412–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klapan Iet al. Lipid-bound sialic acid, prostaglandin E and histamine in head and neck cancer.Eur J Cancer 1993;29A: 839–845.

    Article  CAS  PubMed  Google Scholar 

  30. Marnett LJ. Aspirin and related nonsteroidal anti-inflammatory drugs as chemopreventive agents against colon cancer [Review].Prev Med 1995;24: 103–106.

    Article  CAS  PubMed  Google Scholar 

  31. Arvind Pet al. Prostaglandin E2 down-regulates the expression of HLA-DR antigen in human colon adeno-carcinoma cell lines.Biochemistry 1995;34: 5604–5609.

    Article  CAS  PubMed  Google Scholar 

  32. Arteaga CLet al. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression.J Clin Invest 1993;92: 2569–2576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wright JA, Turley EA, Greenberg AH. Transforming growth factor beta and fibroblast growth factor as promoters of tumor progression to malignancy [Review].Crit Rev Oncog 1993;4: 473–492.

    CAS  PubMed  Google Scholar 

  34. Fakhrai Het al. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy.Proc Natl Acad Sci USA 1996;93: 2909–2914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blanckaert VD, Schelling ME, Elstad CA. Differential growth factor production, secretion, and response by high and low metastatic variants of B16BL6 melanoma.Cancer 1993;53: 4075–4081.

    CAS  Google Scholar 

  36. Friedman Eet al. High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer.Cancer Epidemiol Biomark Prev 1995;4: 549–554.

    CAS  Google Scholar 

  37. Friess Het al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival.Gastroenterology 1993;105: 1846–1856.

    Article  CAS  PubMed  Google Scholar 

  38. Steiner MS, Zhou ZZ, Tonb DC, Barrack ER. Expression of transforming growth factor-beta 1 in prostate cancer.Endocrinology 1994;135(5): 2240–2247.

    Article  CAS  PubMed  Google Scholar 

  39. Bottomly K. A functional dichotomy in CD4+ lymphocyte [Review].Immunol Today 1988;9: 268–274.

    Article  CAS  PubMed  Google Scholar 

  40. Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases [Review].Clin Microbiol Rev 1996;9: 532–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sredni B. Predominance of TH1 response in tumor-bearing mice and cancer patients treated with AS101.J Natl Cancer Inst 1996;88: 1276–1284.

    Article  CAS  PubMed  Google Scholar 

  42. Lowes MA, Bishop GA, Crotty K, Barnetson RS, Halliday GM. T helper 1 cytokine mRNA is increased in spontaneously regressing primary melanomas.J Invest Dermatol 1997;108: 914–919.

    Article  CAS  PubMed  Google Scholar 

  43. Vieira Pet al. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI.Proc Natl Acad Sci USA 1991;88: 1172–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. MacNeil IA, Suda T, Moore KW, Mosmann TR, Zlotnik A. IL-10, a novel growth cofactor for mature and immature T cells.J Immunol 1990;145: 4167–4173.

    Article  CAS  PubMed  Google Scholar 

  45. Chen WF, Zlotnik A. IL-10: a novel cytotoxic T cell differentiation factor.J Immunol 1991;147: 528–534.

    Article  CAS  PubMed  Google Scholar 

  46. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes.J Exp Med 1991;174: 1209–1220.

    Article  PubMed  Google Scholar 

  47. Fiorentino DFet al. IL-10 inhibits cytokine production by activated macrophages.J Immunol 1991;147: 3815–3822.

    Article  CAS  PubMed  Google Scholar 

  48. Fiorentino DFet al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells.J Immunol 1991;146: 3444–3451.

    Article  CAS  PubMed  Google Scholar 

  49. Taga K, Mostowski H, Tosato G. Human interleukin-10 can directly inhibit T cell growth.Blood 1993;81: 2964–2971.

    Article  CAS  PubMed  Google Scholar 

  50. de waal-Malefyt Ret al. IL-10 and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via down-regulation of class II MHC expression.J Exp Med 1991;174: 915–924.

    Article  PubMed  Google Scholar 

  51. Caux Cet al. Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells.Int Immunol 1994;6: 1177–1185.

    Article  CAS  PubMed  Google Scholar 

  52. Peguet-Navarro Jet al. Interleukin-10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells.Eur J Immunol 1994;24: 884–891.

    Article  CAS  PubMed  Google Scholar 

  53. Ding LS, Linsley PS, Huang L-Y, Germain RR, Shevach EM. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression.J Immunol 1993;151: 1224–1234.

    Article  CAS  PubMed  Google Scholar 

  54. Gazzinelli RT, Oswald IP, James SL, Sher A. IL-10 inhibits parasite killing and nitric oxide production by IFN-g-activated macrophages.J Immunol 1992;148: 1792–1796.

    Article  CAS  PubMed  Google Scholar 

  55. Hagenbaugh Aet al. Altered immune responses in interleukin 10 transgenic mice.J Exp Med 1997;185: 2101–2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gastle GAet al. Interleukin-10 production by human carcinoma cell lines and its relationship to interleukin-6 expression.Int J Cancer 1993;55: 96–101.

    Article  Google Scholar 

  57. Gotlieb WHet al. Presence of interleukin 10 (Il-10) in the ascites of patients with ovarian and other intra-abdominal cancers.Cytokine 1992;4: 385–390.

    Article  CAS  PubMed  Google Scholar 

  58. Pisa Pet al. Selective expression of interleukin 10, interferon-g and granulocyte-macrophage colony-stimulating factor in ovarian cancer biopsies.Proc Natl Acad Sci USA 1993;89: 7708–7712.

    Article  Google Scholar 

  59. Nakagomi Het al. Lack of interleukin-2 (IL-2) expression and selective expression of IL-10 mRNA in human renal cell carcinoma.Int J Cancer 1995;63: 366–371.

    Article  CAS  PubMed  Google Scholar 

  60. Huang Met al. Human non-small lung cancer cells express a type 2 cytokine pattern.Cancer Res 1995;55: 3847–3853.

    CAS  PubMed  Google Scholar 

  61. Kruger-Krasagakes Set al. Expression of interleukin 10 in human melanoma.Br J Cancer 1994;70: 1182–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dummer Wet al. Interleukin-10 production in malignant melanoma: preferential detection of Il-10-secreting tumor cells in metastatic lesions.Int J Cancer 1996;66: 607–610.

    Article  CAS  PubMed  Google Scholar 

  63. Matsuda Met al. Interleukin-10 pre-treatment protects target cells from tumor- and allo-specific cytotoxic T-cells and down-regulates HLA class I expression.J Exp Med 1994;180: 2371–2376.

    Article  CAS  PubMed  Google Scholar 

  64. Yue FYet al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules.Int J Cancer 1997;71: 630–637.

    Article  CAS  PubMed  Google Scholar 

  65. Ljunggren HG, Karre K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism.J Exp Med 1985;162: 1745–1759.

    Article  CAS  PubMed  Google Scholar 

  66. Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy.Nature 1986;319: 675–678.

    Article  CAS  PubMed  Google Scholar 

  67. Powis SJet al. Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter.Nature 1991;354: 528–531.

    Article  CAS  PubMed  Google Scholar 

  68. Attaya Met al. Ham2 corrects the class I antigen processing defect in RMA-S cells.Nature 1992;355: 647–649.

    Article  CAS  PubMed  Google Scholar 

  69. Ljunggren H-Get al. Empty MHC class I molecules come out in the cold.Nature 1990;346: 476–480.

    Article  CAS  PubMed  Google Scholar 

  70. Salazar-Onfray Fet al. IL-10 converts mouse lymphoma cells to a CTL-resistant, NK sensitive phenotype with low but peptide-inducible MHC class I expression.J Immunol 1995;154: 6291–6298.

    Article  CAS  PubMed  Google Scholar 

  71. Petersson Met al. Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression and poor TAP1/2 function in the prototype NK target YAC-1.J Immunol 1998;161: 2099–2105.

    Article  CAS  PubMed  Google Scholar 

  72. Salazar-Onfray Fet al. Down-regulation of the expression and function of TAP in murine tumor cell lines expressing Interleukin-10.J Immunol 1997;159: 3195–3202.

    Article  CAS  PubMed  Google Scholar 

  73. Kiessling R, Klein E, Pross H, Wigzel H. ‘Natural’ killer cells in the luse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cells.Eur J Immunol 1975;5: 117–121.

    Article  CAS  PubMed  Google Scholar 

  74. Cikes M, Friberg S Jr, Klein G. Progressive loss of H-2 antigen(s) determined by Moloney leukemia virus in cultured murine lymphomas.J Natl Cancer Inst 1973;50: 347–362.

    Article  CAS  PubMed  Google Scholar 

  75. Becker S, Kiessling R, Lee N, Klein G. Modulation of sensitivity to natural killer cell lysis afterin vitro explantation of a mouse lymphoma.J Natl Cancer Inst 1978;61: 1495–1498.

    CAS  PubMed  Google Scholar 

  76. Petersson MG, Karre K, Cochet M, Kourilsky P, Kiessling R. An active T-cell-independent mechanism enhances MHC class I transcription and expression on a mouse T-cell lymphomain vivo.Cell Immunol 1987;108: 460–472.

    Article  CAS  PubMed  Google Scholar 

  77. Richter Get al. Interleukin 10 transfected into Chinese hamster ovary cells prevents tumor growth and macrophage infiltration.Cancer Res 1993;53: 4134–4137.

    CAS  PubMed  Google Scholar 

  78. Maxwell Eet al. In vivo effects of hIL-10 on the growth of various tumors.Proc Am Assoc Cancer Res 1994:35: 480–485.

    Google Scholar 

  79. Giovarelli Met al. Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances anti tumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory.J Immunol 1995;155: 3112–3123.

    Article  CAS  PubMed  Google Scholar 

  80. Zheng LMet al. Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism.J Exp Med 1996;184: 579–584.

    Article  CAS  PubMed  Google Scholar 

  81. Kundu N, Fulton AM. Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis.Cell Immunol 1997;180: 55–61.

    Article  CAS  PubMed  Google Scholar 

  82. Zeidler Ret al. Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10.Blood 1997;90: 2390–2397.

    Article  CAS  PubMed  Google Scholar 

  83. Benjamin D, Park CD, Sharma V. Human B cell interleukin 10 [Review].Leuk Lymphoma 1994;12: 205–210.

    Article  CAS  PubMed  Google Scholar 

  84. Lee SPet al. Antigen presenting phenotype of Hodgkin Reed-Sternberg cells: analysis of the HLA class I processing pathway and the effects of interleukin-10 on Epstein-Barr virus-specific cytotoxic T-cell recognition.Blood 1998;92: 1020–1030.

    Article  CAS  PubMed  Google Scholar 

  85. Sugita K, Miyazaki JI, Appella E, Ozato K. Interferons increase transcription of a mayor histocompatibility class I gene via a 5 interferon consensus sequence.Mol Cell Biol 1987;7: 2625–2630.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ayalon Oet al. Induction of transporter associated with antigen processing by interferon-gamma confers endothelial cell cytoprotection against natural killer-mediated lysis.Proc Natl Acad Sci USA 1998;95:2435–2440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Restifo NP, Spiess PJ, Karp SE, Mulé JJ, Rosenberg SA. A nonimmunogenic sarcoma transduced with the cDNA for interferon g elicits CD8+ T cells against the wild type tumor: Correlation with antigen presentation capability.J Exp Med 1992;175: 1423–1431

    Article  CAS  PubMed  Google Scholar 

  88. Hiltbold EM, Ziegler HK. Interferon-gamma and interleukin-10 have cross-regulatory roles in modulating the class I and class II MHC-mediated presentation of epitopes of Listeria monocytogenes by infected macrophages.J Interferon Cytokine Res 1996;16: 547–554.

    Article  CAS  PubMed  Google Scholar 

  89. Hill Aet al. Herpes simplex virus turns off the TAP to evade host immunity.Nature 1995;375: 411–415.

    Article  CAS  PubMed  Google Scholar 

  90. Fruh Ket al. A viral inhibitor of peptide transporters for antigen presentation.Nature 1995;375: 415–418.

    Article  CAS  PubMed  Google Scholar 

  91. Rotem-Yehudar R, Groettrup M, Soza A, Kloetzel PM, Ehrlich R. Lmp-associated proteolytic activities and TAP-dependent peptide transport for class I MHC molecules are suppressed in cell lines transformed by the highly oncogenic Adenovirus12.J Exp Med 1996;183: 499–514.

    Article  CAS  PubMed  Google Scholar 

  92. Rotem-Yehudar R, Winograd S, Sela S, Coligan JE, Ehrlich R. Downregulation of peptide transporter genes in cell lines transformed with the highly oncogenic adenovirus 12.J Exp Med 1994;180: 477–488.

    Article  CAS  PubMed  Google Scholar 

  93. Bacchetta Ret al. High levels of interleukin 10 productionin vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells.J Exp Med 1994;179: 493–502.

    Article  CAS  PubMed  Google Scholar 

  94. Rosenberg SAet al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma.Nat Med 1998;4(3): 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nestle FOet al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells.Nat Med 1998;4(3): 328–332.

    Article  CAS  PubMed  Google Scholar 

  96. Wang L, Goillot E, Tepper RI. IL-10 inhibits alloreactive cytotoxic T lymphocyte generationin vivo.Cell Immunol 1994;159: 152–169.

    Article  CAS  PubMed  Google Scholar 

  97. Suzuki Tet al. Viral interleukin-10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local energy to allogeneic and syngeneic tumors.J Exp Med 1995;182: 477–486.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Salazar-Onfray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-Onfray, F. Interleukin-10: a cytokine used by tumors to escape immunosurveillance. Med Oncol 16, 86–94 (1999). https://doi.org/10.1007/BF02785841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785841

Keywords

Navigation