Skip to main content
Log in

Ferricenium salts as true substrates of glucose oxidase

A SteadyState Kinetic Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The steady-state kinetics of D-glucose oxidation by ferricenium dyes RFc+PF6 - (R = H, Me, Et, n-Bu, MeCH2CMe2, and Cl) and 1,1′-Et2Fc+PF6-catalyzed by glucose oxidase from Aspergillus niger was investigated as a function of RFc+ and D-glucose concentrations at pH 6.7, 25°C in the presence of 2% (v/v) Triton X-100. The enzymatic bleaching is characterized by large steady-state portions on the kinetic curves for all ferricenium ions studied. The reaction follows the MichaelisMenten kinetics demonstrating a high affinity of RFc+ toward the active site of reduced glucose oxidase (GO). The reaction rate is weakly sensitive to the nature of RFc+, and the apparent Vm(app) values decrease only twofold on going from the most to the least reactive salt in the series (l,l′-Et2Fc+ and CIFc+, respectively), although their observed redox potentials differ by 160 mV. Remarkably, the reactivity of RFc+ does not increase with increasing their oxidative power. The apparent Michaelis constants Km(app) are also weakly sensitive to the nature of RFc+. The profiles for the steady-state rate vs [HFc+] and [D-glucose] were rationalized in terms of the “ping-pong” mechanism typical of the catalysis by GO. Ferrocenecarboxylic acid (FcCOOH) appeared to be a competitive inhibitor of GO with the inhibition constant of (3 ±1) x 10-3M. The pH profile for the ferricenium fading is bell-shaped with the optimum around 7.5. A simple routine for a rapid in situ preparation of the ferricenium dye, which is ready for spectrophotometric assaying of the GO activity, is presented. The apparent Vm(app) and Km(app) values for this substrate are similar to those for HFc+PF6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, R. and Turner, A. P. F. (1992),Biosensors & Bioelectronics 7, 165–185.

    Article  CAS  Google Scholar 

  2. Perevalova, E. G., Reshetova, M. D., and Grandberg, K. I. (1983),Methods in Organometallic Chemistry. Ferrocene. Nauka, Moscow (in Russian).

    Google Scholar 

  3. Cass, A. E. G., Davis, G., Francis, G. D., Hill, H. A. O., Aston, W. J., Higgins, I.J., Plotkin, E. O., Scott, L. D. L., and Turner, A. P. F. (1984),Anal. Chem. 56, 667–671.

    Article  CAS  Google Scholar 

  4. Bartlett, P. N. and Whitaker, R. (1987/88),Biosensors 3, 359–379.

    Article  CAS  Google Scholar 

  5. Green, M. J. and Hill, H. A. O. (1986),J. Chem. Soc. Faraday Trans. 1, 1237–1243.

    Google Scholar 

  6. Bartlett, P. N. and Whitaker, R. (1987),J. Chem. Soc. Chem. Commun. 1603, 1604.

    Google Scholar 

  7. Degani, Y. and Heller, A. (1987),J. Phys. Chem. 91, 1285–1289.

    Article  CAS  Google Scholar 

  8. Ryabov, A. D., Trushkin, A. M., Baksheeva, L. I., Gorbatova, R. K., Kubrakova, I. V., Mozhaev, V. V., Gnedenko, B. B., and Levashov, A. V. (1992),Angew. Chem. Int. Ed. Engl. 31, 789–790.

    Article  Google Scholar 

  9. Bourdillon, C., Demaille, C., Moiroux, J., and Savéant, J.-M. (1993),J. Am. Chem. Soc. 115, 2–10.

    CAS  Google Scholar 

  10. Ryabov, A. D., Amon, A., Gorbatova, R. K., Ryabova, E. S., and Gnedenko, B. B. (1995),J. Phys. Chem. 99, 14,072–14,077.

    Article  CAS  Google Scholar 

  11. Ryabov, A. D., Ryabova, E. S., and Reshetova, M. D. To be submitted.

  12. Luong, J. H. T., Male, K. B., and Zhao, S. (1993),Anal. Biochem. 212, 269–276.

    Article  CAS  Google Scholar 

  13. Tegoulia, V., Gnedenko, B. B., and Ryabov, A. D. (1993),Biochem. Mol. Biol. Int. 31, 769–775.

    CAS  Google Scholar 

  14. Goral, V. N., Nelen’, M. I., and Ryabov, A. D. (1995),Anal. Lett. 28, 2139–2149.

    CAS  Google Scholar 

  15. Ryabov, A. D. (1991),Angew. Chem. Int. Ed. Engl. 30, 931–941; Ryabov, A. D. (1995),Ross. Khim. Zh., 137–144.

    Article  Google Scholar 

  16. Lehman, T. C. and Thorpe, C. (1990),Biochemistry 29, 10,594–10,602.

    Article  CAS  Google Scholar 

  17. Weibel, M. K. and Bright, H. J. (1971),J. Biol. Chem. 246, 2734–2744.

    CAS  Google Scholar 

  18. Fersht, A. (1977), inEnzyme Structure and Mechanism, W. H. Freeman, San Francisco, Ch. 3.

    Google Scholar 

  19. Keleti, T. (1990), inBasic Enzyme Kinetics, Akadéiai Kiadó, Budapest, Ch. 3.

    Google Scholar 

  20. Webb, J. L. (1963),Enzyme and Metabolic Inhibitors. General Principles of Inhibition, Academic, New York, Ch. 3.

    Google Scholar 

  21. Hecht, H. J., Kalisz, H. M., Hendle, J., Schmid, R. D., and Schomburg, D. (1993),J. Mol. Biol. 229, 153–172.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabov, A.D., Firsova, Y.N. & Nelen, M.I. Ferricenium salts as true substrates of glucose oxidase. Appl Biochem Biotechnol 61, 25–37 (1996). https://doi.org/10.1007/BF02785685

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785685

Index entries

Navigation