Skip to main content
Log in

Intracellular distribution of selenium and the growth of mammary cells in culture

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Retention of Se in CMT-13 cells increased with an increase in the concentration of selenite in the incubation medium, the duration of exposure, and the density of the culture. The enhanced toxicity of selenite coincided with a proportional increase in Se in both the cytoplasm and nucleus. About 90% of the accumulated Se was isolated with cytoplasmic macromolecules. Increased nuclear Se retention correlated with increased cytoplasmic Se retention. Greater quantities of cytosolic Se-containing proteins (74, 55, 41, 34, and 28 kDa) and a nuclear Se-containing protein (56 kDa) were detected as the quantity of Se within CMT-13 cells increased. These findings suggest that cellular retention and distribution of Se are determinanants of the degree of cellular growth inhibition caused by this trace element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMT-13:

canine mammary tumor cell line 13

GPX:

glutathione peroxidase

FBS:

fetal bovine serum

DTT:

DL-dithiothreitol

PMSF:

phenylmethylsulfonyl fluoride

TCA:

trichloroacetic acid

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

EDTA:

ethylenediamine tetraacetate

GSH:

glutathione

References

  1. W. L. MeKeehan, W. G. Hamilton, and R. G. Han, Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts.Proc. Natl. Acad. Sci. USA 73, 2023–2027 (1976).

    Article  Google Scholar 

  2. Y. Y. Cheng and P. C. Qian, The effect of selenium-fortified table salt in the prevention of Keshan disease on a population of 1.05 million.Biomed. Environ. Sci. 3: 422–428 (1990).

    PubMed  CAS  Google Scholar 

  3. R. F. Burk and K. E. Hill, Regulation of selenoproteins.Annu. Rev. Nutr. 13: 65–81 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. G. N. Schrauzer, Selenium. Mechanistic aspects of anticarcinogenic action.Biol. Trace Element Res. 33, 51–62 (1992).

    CAS  Google Scholar 

  5. M. J. Kuchan, M. A. Fico-Santoro, and J. A. Milner, Consequences of selenite supplementation on the growth and metabolism of cultures of canine mammary cells.J. Biochem. Nutr. 1, 478–483 (1990).

    Article  CAS  Google Scholar 

  6. D. Medina, D. Morrison, and C. J. Oborn, Selenium retention and inhibition of cell growth in mouse mammary epithelial cell linein vitro.Biol. Trace Element Res. 8, 19–35 (1985).

    CAS  Google Scholar 

  7. M. E. Fico, K. A. Poirier, A. Watrach, M. Watrach, and J. A. Milner, Differential effects of selenium on normal and non-neoplastic mammary cells.Cancer Res. 46, 3384–3388 (1986).

    PubMed  CAS  Google Scholar 

  8. D. G. Morrison, R. C. Berdar, D. F. Pauly, D. S. Turner, C. J. Oborn, and D. Medina, Selenium distribution in mammary epithelial cells reveals its possible mechanism of inhibition of cell growth.Anticancer Res. 8: 51–64 (1988).

    PubMed  CAS  Google Scholar 

  9. D. G. Morrison, M. K. Dishart, and D. Medina, Intracellular 58-kD selenoprotein levels correlate with inhibition of DNA synthesis in mammary epithelial cells.Carcinogenesis 9, 1801–1810 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. G. D. Frenkel, Effect of sodium selenite and selenate on DNA and RNA synthesisin vitro.Toxicol. Lett. 25, 219–223 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. M. J. Kuchan and J. A. Milner, Influence of intracellular glutathione on selenite-mediated growth inhibition of canine mammary tumor cells,Cancer Res. 52, 1091–1095 (1992).

    PubMed  CAS  Google Scholar 

  12. G. Blobel and V. R. Potter, Nuclei from rat liver isolation method that combines purity with high yield.Science 154, 1662–1665 (1966).

    Article  PubMed  CAS  Google Scholar 

  13. A. Vassault, Lactate dehydrogenase.Methods Enzyme Analysis,3, 118 (1988).

    Google Scholar 

  14. R. J. Pennington, Biochemistry of dystrophic muscle.Biochem. J. 80, 649–654 (1961).

    PubMed  CAS  Google Scholar 

  15. R. H. Michell, M. J. Karnovsky, and M. L. Karnovsky, The distribution of some granule-associated enzymes in Guinea-pig polymorphonuclear leucocytes.Biochem. J. 116, 207–216 (1970).

    PubMed  CAS  Google Scholar 

  16. P. S. Thomas and M. N. Farquhar, Specific measurement of DNA in nuclei and nucleic acids using Diaminobenzoic acid.Analytical Biochem. 89, 35–44 (1978).

    Article  CAS  Google Scholar 

  17. K. Ogata, K. Tsurugi, Y-I. Nabeshima, and K. Terao, Analytical methods for synthesis of ribosomal proteins by cell-free systems from rat liver.Methods Enzymol. 8, 515–523 (1979).

    Article  Google Scholar 

  18. E. V. Younglai, F. Godeau, B. Mulvihill, and E. E. Baulieu, Effects of cholera toxin and actinomycin on synthesis of35S-methionine-labeled proteins during progesterone-induced maturation ofXenopus laevis oocytes.Dev. Biol. 91, 6–42 (1982).

    Article  Google Scholar 

  19. W. M. LeStourgeon and A. L. Beyer, The rapid isolation, high-resolution electrophoretic characterization and purification of nuclear proteins.Methods in Cell Biology, Vol. 16, D. M. Prescott, ed. ACademic, New York, pp. 387–392 (1977).

    Google Scholar 

  20. R. G. Richards and B. R. Shaw,In situ protamine release: A versatile sample preparation method for the electrophoretic analysis of nuclear proteins on acid/urea-based gels.Analytical Biochem. 121, 69–82 (1982).

    Article  CAS  Google Scholar 

  21. K. P. McConnell and D. M. Roth,75Se in rat intracellular liver fractions.Biochim. Biophys. Acta 62, 503–508 (1962).

    Article  CAS  Google Scholar 

  22. H. E. Ganther and C. Corcoran, Selenotrisulfide II. Cross-linking of reduced pancreatic ribonuclease with selenium.Biochemistry 8, 2557–2563 (1969).

    Article  PubMed  CAS  Google Scholar 

  23. T. M. Bray and C. G. Taylor, Tissue glutathione nutrition, and oxidative stress.Canad. J. Physiol. Pharm. 71, 746–751 (1993).

    PubMed  CAS  Google Scholar 

  24. M. J. Kuchan and J. A. Milner, Influence of supplemental glutathione on selenite-mediated growth inhibition of canine mammary cells.Cancer Lett. 57, 181–186 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. E. Senn, E. Scharrer, and S. Wolffram, Effects of glutathione and of cystoine on intestinal absorption of selenium from selenite.Biol. Trace Element Res. 33, 103–108 (1992).

    CAS  Google Scholar 

  26. H. M. Mykkanen and R. Wasserman, Relationship of membrane-bound sulfhydryl groups to vitamin D-stimulated uptake of (75Se) selenite by the brush border membrane vesicles from chick duodenum.J. Nutr. 120, 882–888 (1990).

    PubMed  CAS  Google Scholar 

  27. K. P. McConnell, R. M. Burton, T. Kute, and P. J. Higgins, Selenoprotein from rat testis cytosol.Biochem. Biophys. Acta 588, 113–119 (1979).

    PubMed  CAS  Google Scholar 

  28. H. I. Calvin, Selective incorporation of selenium-75 into a polypeptide in rat sperm tail.J. Exp. Zool. 204, 445–452 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. J. L. Herrman, The properties of a rat serum protein labelled by sodium selenite.Biochim. Biophys. Acta 500, 61–70 (1977).

    PubMed  CAS  Google Scholar 

  30. K. G. Danielson and D. Medina, Distribution of selenoproteins in mouse mammary epithelial cells in vitro and in vivo.Cancer Res. 46, 4582–4589 (1986).

    PubMed  CAS  Google Scholar 

  31. M. P. Bansal R. G. Cook, K. G. Danielson, and D. Medina, A 14-kilodalton selenium-binding protein in mouse liver is fatty acid-binding protein.J. Biol. Chem. 264, 13740–13784 (1989).

    Google Scholar 

  32. W. Nakamura, S. Hosoda, and K. Hyashi, Purification and properties of rat liver glutathione peroxidase.Biochim. Biophys. Acta,358: 251–260, 1974.

    CAS  Google Scholar 

  33. M. J. Berry, L. Banu, and P. R. Larsen, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme.Nature 349, 438–440 (1991).

    Article  PubMed  CAS  Google Scholar 

  34. A. M. Fan and K. W. Kizer, Selenium; nutritional, toxicologic, and clinical aspects.West. J. Med. 153, 160–167 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, K., Milner, J.A. Intracellular distribution of selenium and the growth of mammary cells in culture. Biol Trace Elem Res 51, 133–147 (1996). https://doi.org/10.1007/BF02785433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785433

Index Entries

Navigation