Skip to main content
Log in

Effect of dietary caffeine and zinc on the activity of antioxidant enzymes, zinc, and copper concentration of the heart and liver in fast-growing rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the relationship between concentrations of Zn and Cu and the activities of superoxide dismutase and glutathione peroxidase in the heart and liver of young rat pups whose dams were fed a diet supplemented with caffeine and/or Zn. Four groups of dams with their newborn pups were fed one of the following diets for 22 d: 20% protein basal diet; the basal diet supplemented with caffeine (2 mg/100 body wt); the basal diet supplemented with Zn (300 mg/kg diet); or the basal diet supplemented with caffeine plus Zn. The Cu levels in the livers of the pups were decreased by maternal intake of the caffeine and Zn diet. The maternal intake of the caffeine diet increased Mn-superoxide dismutase (MnSOD) activity and Cu, Zn-superoxide dismutase (CUZnSOD) in the heart of the pups. On the other hand, the activity of Cu,ZnSOD was significantly reduced in the liver of pups whose dams consumed a caffeine, Zn, or caffeine plus Zn diet. Cu, ZnSOD activity in the liver of the pups seems to be correlated with Cu levels in the tissue. Selenium-dependent glutathione peroxidase (GSH-Px) activities in the heart and liver showed no difference among the groups. The effect of dietary caffeine and/or Zn on the activity of antioxidant enzymes in the heart and liver were different in young rats. The activities of these enzymes in the heart were lower than in the liver of 22-d-old rats. Our experiments indicate that the heart has limited defenses against the toxic effects of peroxides when compared to the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Rossowska, C. Dinh, S. B. Gottschalk, M. Yazdani, F. S. Sutton, III and T. Nakamoto,Brit. J. Nutr. 64, 561–567 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. M. J. Rossowska and T. Nakamoto,Pediatr. Res. 32, 330–332 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. T. Nakamoto, F. Joseph, Jr., M. Yazdani and A. D. Hartman,Toxicol. Letters 44, 167–175 (1988).

    Article  CAS  Google Scholar 

  4. H. Sasahara, H. Yamano and T. Nakamoto,Archs. Oral Biol. 35, 425–430 (1990).

    Article  CAS  Google Scholar 

  5. W. J. Bettger and B. L. O'DellJ. Nutr. Biochem,4, 194–207 (1993).

    Article  CAS  Google Scholar 

  6. P. J. Thornally and M. Vasak,Biochem. Biophys. Acta 827, 36–44 (1985).

    Google Scholar 

  7. P. Oestreicher and R. J. Cousins,J. Nutr. 115, 159–166 (1985).

    PubMed  CAS  Google Scholar 

  8. J. M. McCord and I. Fridovich,J. Biol. Chem.,244, 6049–6055 (1969).

    PubMed  CAS  Google Scholar 

  9. C. L. Keen, N. H. Reinstein, J. Goudey-Lefevre, M. Lefevre, B. Lonnerdal, B. O. Schneeman and L. S. Hurley,Biol. Trace Element Res. 8, 123–135 (1985).

    CAS  Google Scholar 

  10. S. A. Schlicker and D. H. Cox,J. Nutr. 95, 287–294 (1968).

    PubMed  CAS  Google Scholar 

  11. A. B. Abel-Mageed and F. W. Oehme,Biol. Trace Element Res. 29, 239–255 (1991).

    Google Scholar 

  12. J. R. Prohaska,J. Nutr. Biochem. 1, 452–461 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. J. R. Prohaska, R. A. Sunde and K. R. Zinn,J. Nutr. Biochem. 3, 429–436 (1992).

    Article  CAS  Google Scholar 

  14. T. Nakamoto and R. J. Shaye,J. Nutr. 116, 633–640 (1986).

    PubMed  CAS  Google Scholar 

  15. J. D. Crapo, J. M. McCord and I. Fridovich,Methods in Enzymology, Vol. 53, S. P. Clowick, Ed., pp. 382–387, Academic Press, New York (1978).

    Google Scholar 

  16. J. R. Prohaska and D. E. Gutsch,Biol.Trace Element Res. 5, 35–45 (1983).

    CAS  Google Scholar 

  17. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randal,J. Biol. Chem.,193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  18. M. Bonati and S. Garattini,Caffeine P. B. Dews, Ed., pp. 48–56, Springer-Verlag, New York (1984).

    Google Scholar 

  19. M. Kleiber,The Fire of Life: An Introduction to Animal Energetics, Wiley, New York, pp. 177–216, 218 (1961).

    Google Scholar 

  20. N. T. Davies and R. B. Williams,Br. J. Nutr. 38, 417–423 (1977).

    Article  PubMed  CAS  Google Scholar 

  21. A. Matsuda, D. L. Longo, Y. Kobayashi, E. Appella, J. J. Oppenheim and K. Matsushima,FASEB J. 2, 3087–3091 (1988).

    Google Scholar 

  22. G. H. W. Wong and D. V. Goeddel,Science 242, 941–944 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. S. Borrello, M. E. DeLeo, H. Wohlrab and T. Galeotti,FEBS Letters 310, 249–254 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. W. J. Bettger and T. M. Bray,Nutr. Res. 9, 319–326 (1989).

    Article  CAS  Google Scholar 

  25. M. R. Labbe and P. W. F. Fisher,J. Nutr. 114, 813–822 (1984).

    CAS  Google Scholar 

  26. A. S. Prasad, G. J. Brewer, E. B. Schoomaker and P. Rabbani,JAMA 240, 2166–2168 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. M. Abdulla,Lancet 1, 616 (1979).

    Article  PubMed  CAS  Google Scholar 

  28. D. H. Cox and D. L. Harris,J. Nutr. 78, 415–419 (1962).

    PubMed  CAS  Google Scholar 

  29. M. R. Labbe and P. W. F. Fisher,J. Nutr. 114, 823–828 (1984).

    CAS  Google Scholar 

  30. G. D. Duncan, L. F. Gray and L. J. Daniel,Proc. Soc. exp. Biol. Med. 83, 625–627 (1953).

    PubMed  CAS  Google Scholar 

  31. C.-C. Lai, W.-H. Huang, A. Askari, Y. Wang, N. Sarvazyan, L. M. Klevay and T. H. Chiu,Free Radic. Bio. Med. 16, 613–620 (1994).

    Article  CAS  Google Scholar 

  32. J. D. Hammermueller, T. M. Bray and W. J. Bettger,J. Nutr. 117, 894–901 (1987).

    PubMed  CAS  Google Scholar 

  33. T. M. Bray, S. Kubow and W. J. Bettger,J. Nutr. 116, 1054–1060 (1986).

    PubMed  CAS  Google Scholar 

  34. P. S. Balewska, E. M. Russanov and T. A. Kassabova,Int. J. Biochem. 12, 489–493 (1981).

    Article  Google Scholar 

  35. S. R. Gooneratne and J. McHowell,Trace Element Metabolism in Man and Animals, J. McHowell, J. M. Gawthrone and C. L. White, eds., Australian Acad. Sci, Canberra, pp. 468–470, (1981).

    Google Scholar 

  36. P. Van Hien, K. Kovacs, and B. Matkovics,Enzyme (Basel)19, 1–4 (1975).

    Google Scholar 

  37. J. H. Doroshow, G. Y. Locker and C. E. Myers,J. Clin. Invest 65, 128–135 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossowska, M.J., Ghanel, P. & Nakamoto, T. Effect of dietary caffeine and zinc on the activity of antioxidant enzymes, zinc, and copper concentration of the heart and liver in fast-growing rats. Biol Trace Elem Res 50, 229–236 (1995). https://doi.org/10.1007/BF02785413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785413

Index Entries

Navigation