Supplementation of calves with stabilized orthosilicic acid

Effect on the Si, Ca, Mg, and P concentrations in serum and the collagen concentration in skin and cartilage

Abstract

The bioavailability of silicon in stabilized orthosilicic acid was investigated in a double blind, placebo controlled supplementation study of calves maintained on a normal diet. The total dietary Si intake was increased by 4.9% in the form of stabilized orthosilicic acid. After 23 wk of Si supplementation, the serum Si concentration increased (p=0.0001,n=29) by 70% compared to control animals in spite of the low Si dose administered and the Si adequate diet. The individually administered Si dose was significantly associated with the serum Si concentration (r=0.44,p=0.016,n=29). The collagen concentration in dermis was significantly higher (p=0.019,n=4) in the Si group and a positive correlation (r=0.72,p=0.018,n=9) was found between the Si concentration in serum and the collagen concentration in cartilage. The calcium (Ca) and phosphorus (P) concentrations in serum were marginally higher for animals supplemented with Si compared to control animals. In serum, a significant linear relationship was found between the Si and the Ca concentration (r=0.31,p=0.019,n=59), whereas the magnesium concentration correlated marginally with the Si concentration (r=0.25,p=0.068,n=59). In summary, increasing the total dietary Si intake by 4.9% in the form of stabilized orthosilicic acid resulted in a 70% higher Si concentration in serum indicating a high bioavailability of Si in this supplement. The positive correlation between the serum Si concentration and the collagen concentration in cartilage and the serum Ca concentration, respectively, suggest the involvement of Si both in the formation of extracellular matrix components and in Ca metabolism.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    W. M. Darley and B. E. Volcani,Exp. Cell Res. 58, 334–342 (1969).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    M. Hildebrand, D. R. Higgens, K. Busser, and B. E. Volcani,Gene 132, 213–218 (1993).

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    A. G. Sangster and M. J. Hodson, Silica in higher plants nutrition, inSilicon Biochemistry, CIBA Foundation Symposium 121, John Wiley and Sons, New York, pp. 90–111 (1986).

    Google Scholar 

  4. 4.

    E. M. Carlisle, Silicon as an essential trace element in animal nutrition, inSilicon Biochemistry, CIBA Foundation Symposium 121, John Wiley and Sons, New York, pp. 123–139 (1986).

    Google Scholar 

  5. 5.

    E. M. Carlisle,Science 167, 279, 280 (1970).

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    E. M. Carlisle,J. Nutr. 106, 478–484 (1976).

    PubMed  CAS  Google Scholar 

  7. 7.

    E. M. Carlisle,J. Nutr. 110, 1046–1056 (1980).

    PubMed  CAS  Google Scholar 

  8. 8.

    P. C. D'Haese, F. A. Shaheen, S. O. Huraib, L. Djukanovic, M. H. Polenakovic, G. Spasovski, A. Shikole, M. L. Schurgers, R. F. Daneels, L. V. Lamberts, G. F. Van Landeghem, and M. E. De Broe,Nephrol. Dial. Transplant 10, 1838–1844 (1995).

    PubMed  Google Scholar 

  9. 9.

    A. J. Adler, Z. Etzion, and G. M. Berlyne,Am. J. Physiol. (Endocrinol. Metab. 14) 251, E670-E673 (1986).

    CAS  Google Scholar 

  10. 10.

    G. M. Berlyne, A. J. Adler, N. Ferran, S. Bennett, and J. Holt,Nephron 43, 2–9 (1986).

    Article  Google Scholar 

  11. 11.

    J. P. Bellia, J. D. Birchall, and N. B. Roberts,Lancet 343, 235 (1994).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    P. Creac'H and J. Adrian,Med. et Nut. T.XXVI., 73–90 (1990).

    Google Scholar 

  13. 13.

    H. Baumann,Hoppe-Seyler's Z. Physiol. Chem. 319, 38–51 (1960).

    PubMed  CAS  Google Scholar 

  14. 14.

    H. Baumann,Hoppe-Seyler's Z. Physiol. Chem. 320, 11–20 (1960).

    PubMed  CAS  Google Scholar 

  15. 15.

    G. M. Benke and T. W. Osborn,Fd. Cosmet. Toxicol. 17, 123–127 (1979).

    Article  CAS  Google Scholar 

  16. 16.

    C. W. Sullivan, Silicification by diatoms inSilicon Biochemistry, CIBA Foundation Symposium 121, John Wiley and Sons, New York, pp. 59–89 (1986).

    Google Scholar 

  17. 17.

    R. J. P. Williams, Introduction to silicon chemistry and biochemistry, inSilicon Biochemistry, CIBA Foundation Symposium 121, John Wiley and Sons, New York, pp. 24–39 (1986).

    Google Scholar 

  18. 18.

    Z. Zhuang, P. Yang, X. Wang, Z. Deng, and B. Huang,J. Anal. At. Spectrometry 8, 1109–1111 (1993).

    Article  CAS  Google Scholar 

  19. 19.

    H. Deelstra, K. Van Dijck, R. Van Cauwenbergh, and H. Robberecht, Determination of Daily Dietary Silicon intake in Belgium, inCurrent Status and Future Trends in Analytical Food Chemistry, Proceedings of Euro Food Chem. VIII, vol. 3, pp. 608–611 (1995).

  20. 20.

    H. J. Robberecht, P. Hendrix, R. Van Cauwenbergh, and H. DeelstraZ. Lebensm. Unters. Forsch. 199, 446–448 (1994).

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    E. M. Gindler and J. D. King,Am. J. Clin. Pathol. 58, 376–382 (1972).

    PubMed  CAS  Google Scholar 

  22. 22.

    R. J. Henry,Clinical Chemistry, Harper and Row, New York (1974).

    Google Scholar 

  23. 23.

    C. K. Mann and J. H. Yoe,Anal. Chem. 28, 202–205 (1956).

    Article  CAS  Google Scholar 

  24. 24.

    F. Hill,J. Food Sci. 31, 161–166 (1966).

    Article  CAS  Google Scholar 

  25. 25.

    C. D. Seaborn and F. H. Nielsen,Biol. Trace Elem. Res. 42, 151–164 (1994).

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    J. Najda, J. Gmiñski, M. Drózdz, and A. Danch,Biol. Trace Elem. Res. 37, 107–114 (1993).

    PubMed  CAS  Google Scholar 

  27. 27.

    M. Hott, C. de Pollak, D. Modrowski, and P. J. Marie (1993),Calcif. Tissue Int. 53, 174–179 (1993).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    H. W. Rabon, Jr., D. A. Roland, Sr., and M. M. Brylant,Poultry Sci. 74, 352–359 (1995).

    CAS  Google Scholar 

  29. 29.

    K. S. Frey, G. D. Potter, T. W. Odom, D. M. Senor, V. D. Reagan, V. H. Weir, J. Elslander, S. P. Webb, E. L. Morris, W. B. Smith, and K. E. Weigand,Equine Vet. Sci. 12, 292–295 (1992).

    Article  Google Scholar 

  30. 30.

    E. M. Carlisle, A metabolic role for silicon in cartilage growth, inProceedings of the Fifth International Symposium on Trace Elements in Man and Animals, C. F. Mills, ed., Common Wealth Bureaux, UK, pp. 128–133 (1985).

    Google Scholar 

  31. 31.

    R. H. Wasserman and C. S. Fullmer,J. Nutr. 125, 1971S-1979S (1995).

    PubMed  CAS  Google Scholar 

  32. 32.

    J. Eisinger and D. Clairet,Magnesium Res. 6, 247–249 (1993).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dirk A. Vanden Berghe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Calomme, M.R., Vanden Berghe, D.A. Supplementation of calves with stabilized orthosilicic acid. Biol Trace Elem Res 56, 153–165 (1997). https://doi.org/10.1007/BF02785389

Download citation

Index Entries

  • Silicon supplementation
  • calcium
  • phosphorus
  • magnesium
  • orthosilicic acid
  • collagen
  • cartilage
  • dermis
  • skin