Skip to main content
Log in

A comparative study in rats of measures of the availability of dietary zinc and iron

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare three measures of the availability of dietary Zn and Fe in order to test their validity. Thirtysix 5-wk-old rats were fed deionized water and wheat crispbread made from endosperm flour, whole-grain flour, or endosperm flour supplemented with Zn and Fe to the whole-grain levelsad libitum for 14 d. The retention of65Zn and59Fe from test meals of the same breads after 1 wek and the sum of the excretion of endogenous Zn and Fe (injected65Zn and59Fe) with the Zn and Fe balances, respectively, were used as independent measures of Zn and Fe absorption. Measurements of Zn absorption, Zn balance, and serum Zn concentration gave quite different results with regard to the availability of Zn in the three breads, presumably because of the homeostatic regulation of the absorption and excretion of Zn when the Zn in the diet is in excess of the body’s needs. Measurements of Fe absorption, Fe balance, and Fe concentrations in liver and serum were consistent in demonstrating overloading of Fe in the group given wheat-endosperm crispbread supplemented with Zn and Fe, but there was evidence that the isotope retention method overestimated iron absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sandström, B. Arvidsson, Å Cederblad, and E. Björn-Rasmussen,Am. J. Clin. Nutr. 33, 739–745 (1980).

    PubMed  Google Scholar 

  2. H. H. Sandstead, J. M. Munoz, R. A. Jacob, L. M. Klevay, S. J. Reck, G. M. Logan, F. R. Dintzis, G. E. Inglett, and W. C. Shuey,Am. J. Clin. Nutr. 31, 180–184 (1978).

    CAS  Google Scholar 

  3. A.-S. Sandberg, C. Hasselblad, K. Hasselblad, and L. Hultén,Br. J. Nutr. 48, 185–191 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. B. Sandström, H. Andersson, J. Bosaéus, T. Flakheden, H. Göransson, and M. Melkersson,Hum. Nutr. Clin. Nutr. 37C, 295–300 (1983).

    Google Scholar 

  5. N. T. Davies, V. Hristic, and A. A. Flett,Nutr. Rep. Int. 15, 207–214 (1977).

    CAS  Google Scholar 

  6. D. T. Gordon and L. S. Chao,J. Nutr. 114, 526–535 (1984).

    PubMed  CAS  Google Scholar 

  7. N. T. Davies, A. J. P. Carswell, and C. F. Mills, inTrace Elements in Man and Animals— TEMA5, C. F. Mills, J. Bremner, and J. K. Chesters, eds., Commonwealth Agricultural Bureaux, Aberdeen, 1985, pp. 456–457.

    Google Scholar 

  8. H. A. Faridi, P. L. Finney, and G. L. Rubenthaler,J. Food Sci. 48, 107–110 (1983).

    Article  CAS  Google Scholar 

  9. B. F. Harland, D. E. Stringfellow, D. H. Connor, W. D. Foster, and C. M. Heggie,Fed. Proc. 38, 548 (1979).

    Google Scholar 

  10. M. S. Rose, and E. M. Vahlteich,J. Biol. Chem. 46, 593–608 (1932).

    Google Scholar 

  11. N. T. Davies and R. Nightingale,Br. J. Nutr. 34, 243–258 (1975).

    PubMed  CAS  Google Scholar 

  12. E. Björn-Rasmussen,Nutr. Metab. 16, 101–110 (1974).

    PubMed  Google Scholar 

  13. K. M. Simpson, E. R. Morris, and J. D., Cook,Am. J. Clin. Nutr. 34, 1469–1478 (1981).

    PubMed  CAS  Google Scholar 

  14. A. R. P. Walker, F. W. Fox, and J. T. Irving,Biochem. J. 42, 452–462 (1948).

    PubMed  CAS  Google Scholar 

  15. G. Hallmans, R. Sjöström, L. Wetter, and K. Wing,Br. J. Nutr. 62, 165–175 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. W. M. Becker and W. G. Hoekstra, inTrace Elements and Radionuclides. Intestinal Absorption of Metal Ions, S. C. Skoryna and D. Waldron-Edward, eds., Pergamon Press, Oxford, 1971, pp. 229–256.

    Google Scholar 

  17. E. Weigand and M. Kirchgessner,Nutr. Metab. 20, 307–313 (1976).

    PubMed  CAS  Google Scholar 

  18. E. Weigand and M. Kirchgessner,Nutr. Metab. 20, 314–320 (1976).

    Article  PubMed  CAS  Google Scholar 

  19. N.-G. Asp, C. G. Johansson, H. Hallmer, and M. Siljeström,J. Agric. Food Chem. 31(3), 476–482 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. N. T. Davies and H. Reid,Br. J. Nutr. 41, 579–589 (1979).

    Article  PubMed  CAS  Google Scholar 

  21. P. Holt,J. Sci. Food Agric. 6, 136–142 (1955).

    Article  CAS  Google Scholar 

  22. G. Snedecor and W. Cochran,Statistical Methods, 7th ed. Iowa State University Press, Ames, IA 1980.

    Google Scholar 

  23. E. J. Underwood, inTrace Elements in Human and Animal Nutrition, 3rd ed., Academic Press, New York, 1971, pp. 208–252.

    Google Scholar 

  24. G. Hallmans, U. Nilsson, C. Nygren, R. Sjöström, L. Wetter, and K. Wing, inTrace Element Analytical Chemistry in Medicine and Biology, 2, P. Brätter and P. Schramel, eds., de Gruyter, Berlin, FRG, 1983, pp. 61–74.

    Google Scholar 

  25. P. Tidehag, G. Hallmans, R. Sjöström, B. Sunzel, L. Wetter, and K. Wing,Lab. Anim. 22, 313–319.

  26. E. Björn-Rasmussen,Lancet I, 914–916 (1983)

  27. C. A. Finch, H. A. Ragan, I. A. Dyer, and J. D. Cook,Proc. Soc. Exp. Biol. Med. 159, 335–338 (1978).

    PubMed  CAS  Google Scholar 

  28. E. Weigand and M. Kirchgessner,Nutr. Metab. 22, 101–112 (1978).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wing, K., Wetter, L., Hallmans, G. et al. A comparative study in rats of measures of the availability of dietary zinc and iron. Biol Trace Elem Res 34, 141–159 (1992). https://doi.org/10.1007/BF02785243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785243

Index Entries

Navigation