Skip to main content
Log in

Seasonal and interannual dynamics of free-living bacterioplankton and microbially labile organic carbon along the salinity gradient of the Potomac River

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Samples were collected at stations located in the mesohaline, oligohaline, and tidal fresh regions of the Potomac River, Maryland, between April 1998 and December 1999 to evaluate the seasonal distribution of bacterioplankton and microbially labile organic carbon (MLOC) in relation to hydrodynamic parameters (dissolved oxygen, salinity, and temperature). Bacterioplankton abundance (BA) averaged 13 × 106 cells ml−1 at all stations, a value that is higher than the average observed in many other temperate estuaries around the world, and were almost exclusively free-living. During the summer of 1998, BA often exceeded 30 × 106 cells ml−1 in the mesohaline region during periods of anoxia in subpycnocline waters. Dissolved MLOC typically accounted for 40% of total MLOC and on some occasions during summer and autumn accounted for 80%. A significant positive relationship between dissolved MLOC and BA was evident in the mesohaline Potomac River, the region where anoxia occurs each summer, but the regressions of particulate MLOC and chla on BA were not significant at this location. In the mesohaline Potomac River, BA regressed negatively and significantly on dissolved oxygen (r2=0.50, p<0.001). BA may be an important indicator of ecosystem health in this and other eutrophied estuaries, because of the relationships between BA, dissolved MLOC, and dissolved oxygen in the salinity stratified Potomac River and because free-living BA was elevated along the length of the river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, T. R. andP. J. B. Williams. 1998. Modeling the seasonal cycle of dissolved organic carbon at station E1 in the English Channel.Estuarine Coastal and Shelf Science 46:93–109.

    Article  CAS  Google Scholar 

  • Baines, S. B. andM. L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems.Limnology and Oceanography 36:1078–1090.

    Google Scholar 

  • Bell, C. R. andL. J. Albright. 1982. Attached and free-floating bacteria in a diverse selection of water bodies.Applied and Environmental Microbiology 43:1227–1237.

    CAS  Google Scholar 

  • Bidle, K. D. andM. Fletcher. 1995. Comparison of free-living and particle-associated bacterial communities in the Chesapeake Bay by stable low-molecular-weight RNA analysis.Applied Environmental Microbiology 61:944–952.

    CAS  Google Scholar 

  • Billen, G., J. Garnier, A. Ficht, andC. Cun. 2001. Modeling the response of water quality in the Seine River estuary to human activity in its watershed over the last 50 years.Estuaries 24:977–993.

    Article  CAS  Google Scholar 

  • Boesch, D. F., R. B. Brinsfield, andR. E. Magnien. 2001. Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration and challenges for agriculture.Journal of Environmental Quality 30:303–320.

    CAS  Google Scholar 

  • Cerco, C. F. and T. M. Cole. 2001. Three dimensional eutrophication model of Chesapeake Bay. U.S. Army Corp of Engineers, Technical Report EL-94-4, Vicksburg, Mississippi.

  • Chróst, R. H. andM. A. Faust. 1983. Organic carbon release by phytoplankton: Its composition and utilization by bacterioplankton.Journal of Plankton Research 5:477–493.

    Article  Google Scholar 

  • Cline, J. D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters.Limnology and Oceanography 14:454–458.

    Article  CAS  Google Scholar 

  • Coffin, R. B. andJ. P. Connolly. 1997. Bacteria and heterotrophic microflagellate production in the Santa Rosa Sound, Florida.Hydrobiologia 353:53–61.

    Article  CAS  Google Scholar 

  • Coffin, R. B., J. P. Connolly, andP. S. Harris. 1993. Availability of dissolved organic carbon to bacterioplankton examined by oxygen utilization.Marine Ecology Progress Series 101:9–22.

    Article  CAS  Google Scholar 

  • Coffin, R. B. andJ. H. Sharp. 1987. Microbial trophodynamics in the Delaware Estuary.Marine Ecology Progress Series 41:253–266.

    Article  Google Scholar 

  • Connolly, J. P. andR. B. Coffin. 1995. Model of carbon cycling in planktonic food webs.Journal of Environmental Engineering 121:682–690.

    Article  CAS  Google Scholar 

  • Crump, B. C., J. A. Baross, andC. A. Simenstad. 1998. Dominance of particle-attached bacteria in the Columbia River estuary, USA.Aquatic Microbial Ecology 14:7–18.

    Article  Google Scholar 

  • Diaz, R. J. 2001. Overview of hypoxia around the world.Journal of Environmental Quality 30:275–281.

    CAS  Google Scholar 

  • Druon, J., W. Schrimpf, S. Dobricic, andA. Stips. 2004. Comparative assessment of large-scale marine eutrophication: North Sea area and Adriatic Sea as case studies.Marine Ecology Progress Series 272:1–23.

    Article  Google Scholar 

  • Faust, M. A. andR. J. Chróst. 1981. Photosynthesis, extracellular release and heterotrophy of dissolved organic matter in Rhode River estuarine plankton, p. 465–479.In B. J. Neilson and L. E. Cronin (eds.), Estuaries and Nutrients. The Humana Press Clifton, New Jersey.

    Google Scholar 

  • Findlay, S., M. L. Pace, D. Lints, J. J. Cole, N. F. Caraco, andB. Peieris. 1991. Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary.Limnology and Oceanography 36:268–278.

    Google Scholar 

  • Garnier, J., P. Servais, G. Billen, M. Akopian, andN. Brion. 2001. Lower Seine River and estuary (France) carbon and oxygen budgets during low flow.Estuaries 24:964–976.

    Article  CAS  Google Scholar 

  • Gattuso, J., S. Peduzzi, M. Pizay, andM. Tonolla. 2002. Changes in freshwater bacterial community composition during measurements of microbial and community respiration.Journal of Plankton Research 24:1197–1206.

    Article  CAS  Google Scholar 

  • Goosen, N. K., J. Peene, P. van Rijswijk, andP. van Breugel. 1999. Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: The Elbe, Westerschelde and Gironde.Journal of Marine Systems 22:151–171.

    Article  Google Scholar 

  • Grenberg, A. E., L. S. Clesceri, and A. D. Eaton (eds.). 1992. Standard Methods for the Examination of Water and Wastewater, 18th edition. American Public Health Association. Washington, D.C.

    Google Scholar 

  • Hagy, J. D., W. R. Boynton, C. W. Keefe, andK. V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950–2001: Long-term changes in relation to nutrient loading and river flow.Estuaries 27:634–658.

    Article  CAS  Google Scholar 

  • Hamdan, L. J. 2003. Ecological role of bacteria and bacterially labile organic carbon in oxygen depletion in the Chesapeake Bay. Ph.D. Dissertation. George Mason University, Fairfax, Virginia.

    Google Scholar 

  • Harding, L., M. Mallonee, andE. Perry. 2002. Toward a predictive understanding of primary productivity in a temperate partially stratified estuary.Estuarine Coastal and Shelf Science 55:437–463.

    Article  CAS  Google Scholar 

  • Heidelberg, J. F., K. B. Heidelberg, andR. R. Colwell. 2002. Seasonally of Chesapeake Bay bacterioplankton species.Applied and Environmental Microbiology 68:5488–5497.

    CAS  Google Scholar 

  • Hobbie, J. E., R. J. Daley, andS. Jasper. 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy.Applied and Environmental Microbiology 34:1225–1228.

    Google Scholar 

  • Hoch, M. P. andD. L. Kirchman. 1993. Seasonal and inter-annual variability in bacterial production and biomass in a temperate estuary.Marine Ecology Progress Series 98:283–295.

    Article  Google Scholar 

  • Interstate Commission on the Potomac River Basin (ICPRB). 2000. ICPRB 2000 Annual Report. ICPRB Report 00-4, Rockville, Maryland.

  • Iriberri, J., M. Unanue, I. Ba, andL. Ega. 1997. Seasonal variation in population density and heterotrophic activity of attached and free-living bacteria in coastal waters.Applied and Environmental Microbiology 53:2308–2314.

    Google Scholar 

  • Jonas, R. B. 1997. Bacteria, dissolved organic and oxygen consumption in salinity stratified Chesapeake Bay, an anoxia paradigm.American Zoologist 37:612–620.

    CAS  Google Scholar 

  • Jonas, R. B. andJ. H. Tuttle. 1990. Bacterioplankton and organic carbon dynamics in the lower mesohaline Chesapeake Bay.Applied and Environmental Microbiology 56:747–757.

    CAS  Google Scholar 

  • Rane, R. P. 1999 Some characteristics and precipitation effects of the El Nino of 1997–1998.Journal of Atmospheric Solar and Terrestrial Physics 61:1325–1346.

    Article  Google Scholar 

  • Kauppila, P., J. J. Meeuwig, andH. Pitkanen. 2003. Predicting oxygen in small estuaries of the Baltic Sea: A comparative approach.Estuarine Coastal and Shelf Science 57:1115–1126.

    Article  CAS  Google Scholar 

  • Langland, M. J., R. E. Edwards, L. A. Sprague, and S. E. Yochum. 2001. Summary of Trends and Status Analysis for Flow, Nutrients, and Sediments at, Selected Nontidal Sites, Chesapeake Bay Basin, 1985–99: U.S. Geological Survey Open File Report 01–73. Reston, Virginia.

  • Malone, T. C. 1987. Seasonal oxygen depletion and phytoplankton production in Chesapeake Bay: Preliminary results of 1985–1986 field studies, p. 54–60.In G. B. Mackiernan (ed.), Dissolved Oxygen in the Chesapeake Bay: Processes and Effects. Proceedings of a seminar on hypoxia and related processes in Chesapeake Bay. Maryland Sea Grant, College Park, Maryland.

  • Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle, andR. B. Jonas. 1986. Lateral variation in the production and fate of phytoplankton in a, partially stratified estuary.Marine Ecology Progress Series 32:149–160.

    Article  Google Scholar 

  • Massana, R., C. Pedrós-Alió, C. O. Casamayor, andJ. M. Gasol. 2001. Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parameters.Limnology and Oceanography 46:1181–1188.

    Google Scholar 

  • Murrell, M. C. 2003. Bacterioplankton, dynamics in a subtropical estuary: Evidence for substrate limitation.Aquatic Microbial Ecology 32:239–250.

    Article  Google Scholar 

  • Murrell, M. C., J. T. Hollibaugh, M. W. Silver, andP. S. Wong. 1999. Bacterioplankton dynamics in, northern San Francisco Bay: Role of particle association and seasonal freshwater flow.Limnology and Oceanography 44:295–308.

    Article  Google Scholar 

  • Nagata, T. 2000. Production mechanisms of dissolved organic matter, p. 121–152.In D. L. Kirchman (ed.), Microbial Ecology of the Oceans. Wiley-Liss, Inc., New York.

    Google Scholar 

  • Painchaud, J. andZ. Z. J. Therriault. 1989. Relationships between bacteria, phytoplankton and particulate organic carbon in the upper St. Lawrence estuary.Marine Ecology Progress Series 56:301–311.

    Article  Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis, 1st edition, Pergamon Press, U.K.

    Google Scholar 

  • Pinckney, J. L., H. W. Paerl, P. Tester, andT. L. Richardson. 2001. The role of nutrient loading and eutrophication in estuarine ecology.Environmental Health Perspectives 109:699–706.

    Article  CAS  Google Scholar 

  • Piehler M. F., J. S. Maloney, andH. W. Paerl. 2002. Bacterioplanktonic abundance, productivity and petroleum hydrocarbon, biodegradation in marinas and other coastal waters in North Carolina, USA.Marine Environmental Research 54:157–168.

    Article  CAS  Google Scholar 

  • Ploug, H., H. Zimmermann-Timm, andB. Schweitzer. 2002. Microbial communities and respiration on aggregates in the Elbe estuary Germany.Aquatic Microbial ecology 27:241–248.

    Article  Google Scholar 

  • Pomeroy, L. R., W. J. Wiebe, D. Deibl, R. J. Thompson, G. T. Rowe, andJ. D. Pakulski 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom.Marine Ecology Progress Series 75:143–159.

    Google Scholar 

  • Revilla, M., A. Iriarte I. Madariaga, andE. Orive. 2000. Bacterial and phytoplankton dynamics along a trophic gradient in a shallow temperate estuary.Estuarine Coastal and Shelf Science 50:297–313.

    Article  Google Scholar 

  • Raymond, P. A. andJ. E. Bauer. 2000. Bacterial consumption of DOC during transport through a temperate estuary.Aquatic Microbial Ecology 22:1–12.

    Article  Google Scholar 

  • Rogerson, A. andJ. Laybourn-Parry. 1992. Bacterioplankton abundance and production in the Clyde estuary, Scotland.Archive fur Hydrobiologie 126:1–14.

    Google Scholar 

  • Rublee, P. A., S. M. Merkel, M. A. Faust, andJ. Miklas. 1984. Distribution and activity of bacteria in the headwaters of the Rhode River estuary, Maryland USA.Microbial Ecology 10:243–255.

    Article  Google Scholar 

  • Ruchiwit, K. 2002. Ecological dynamics of bacterioplankton and related organic compounds in the Chao Phraya estuary, Thailand. Ph.D. Dissertation, George Mason University, Fairfax, Virginia.

    Google Scholar 

  • Schubel, J. R. andD. W. Pritchard. 1987. A brief description of Chesapeake Bay, p. 1–32.In S. K. Majumdar, L. W. Hall, Jr., and H. M. Austin (eds.), Contaminant Problems and Management of Living Chesapeake Bay Resources, Pennsylvania Academy of Sciences, Philadelphia, Pennsylvania.

    Google Scholar 

  • Sellner, K. G. andE. W. Neally. 1997. Diel fluctuations in dissolved free amino acids and monosaccharides in Chesapeake Bay dinoflagellate blooms.Marine Chemistry 56:193–200.

    Article  CAS  Google Scholar 

  • Shiah, F.-K. andH. W. Ducklow. 1994. Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA.Marine Ecology Progress Series 103:297–308.

    Article  Google Scholar 

  • Stanley, D. W. andS. W. Nixon. 1992. Stratification and bottomwater hypoxia in the Pamlico River estuary.Estuaries 15:270–281.

    Article  CAS  Google Scholar 

  • Søndergaard, M. andM. Middelboe. 1995. A cross-system analysis of labile dissolved organic carbon.Marine Ecology Progress Series 118:283–294.

    Article  Google Scholar 

  • Søndergaard, M., B. Riemann, andN. O. G. Jorgensen. 1985. Extracellular organic carbon (EOG) released by phytoplankton and bacterial production.Oikos 45:323–332.

    Article  Google Scholar 

  • Troussellier, M., P. Got, M. Bouvy, M. M'Boup, R. Arei, F. Lebihan, P. Monfort, D. Corbin, andC. Bernard. 2004. Water quality and health status of the Senegal River estuary.Marine Pollution Bulletin 48:852–862.

    Article  CAS  Google Scholar 

  • Tuttle, J. H., R. B. Jonas, andT. C. Malone. 1987. Origin, development and significance of Chesapeake Bay anoxia, p. 442–472.In S. K. Majumdar, L. W. Hall, Jr., and H. M. Austin (eds.), Contaminant Problems and Management of Living Chesapeake Bay Resources. Pennsylvania Academy of Sciences, Philadelphia, Pennsylvania.

    Google Scholar 

  • Uncles, R. J., I. Joint, andJ. A. Stephens. 1998. Transport and retention of suspended particulate matter and bacteria in the Humber-Ouse Estuary, United Kingdom, and their relationship to hypoxia and anoxia.Estuaries 21:597–612.

    Article  CAS  Google Scholar 

  • Wright, R. T. andR. B. Coffin. 1983. Planktonic bacteria in estuaries and costal, waters of northern Massachusetts: Spatial and temporal distribution.Marine Ecology Progress Series 11:205–216.

    Article  Google Scholar 

Sources of Unpublished Materials

  • U. S.Environmental Protection Agency (USEPA). unpublished data. Chesapeake Bay Program Office, Chesapeake Bay Water Quality Monitoring Program, Annapolis, Maryland. http:// www.chesapeakebay.net.

  • U. S.Environmental Protection Agency (USEPA). unpublished data. 2000. Meeting the nutrient and sediment reduction goals. Chesapeake Executive Council, Directive No. 04-2 http://www. chesapeakebay.net/info/pressrelcases/ec2004-5/Directive_04-2.pdf.

  • U. S.Environmental Protection Agency (USEPA). unpublished data. 2000. Chesapeake 2000: A Watershed Partnership Agreement. http://www.chesapeakebay.net.

  • Yellow Springs Instruments (YSI). unpublished data. 1999. YSI 58 dissolved oxygen meter operations manual. YSI Incorporated. Yellow Springs, Ohio.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila J. Hamdan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdan, L.J., Jonas, R.B. Seasonal and interannual dynamics of free-living bacterioplankton and microbially labile organic carbon along the salinity gradient of the Potomac River. Estuaries and Coasts: J ERF 29, 40–53 (2006). https://doi.org/10.1007/BF02784697

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784697

Keywords

Navigation