Skip to main content
Log in

Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Water quality and criculation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate densityThalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to −0.410 g CaCO3 m−2d−1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to −1.900 g CaCO3 m−2 night−1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average accumulation rate for Florida Bay of 8.7 cm 1000 yr−1 and suggests that sediment dissolution plays a more important role than sediment transport in loss of sediment from Florida Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Barnes, D. J. andB. E. Chalker. 1990. Calcification and photosynthesis in reef-building corals and algae, p. 109–131.In Z. Dubinsky (ed.), Ecosystems of the World 25: Coral Reefs. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Barnes, D. J. andM. J. Devereux. 1984. Productivity and calcification on a coral reef: A survey using pH and oxygen electrode techniques.Journal of Experimental Marine Biology and Ecology 79:213–231.

    Article  Google Scholar 

  • Bosence, D. W. J. 1989a. Biogenic carbonate production in Florida Bay.Bulletin of Marine Science 44:419–433.

    Google Scholar 

  • Bosence, D. W. J. 1989b. Surface sublittoral sediments of Florida Bay.Bulletin of Marine Science 44:434–453.

    Google Scholar 

  • Bosence, D. W. J. 1989c. Carbonate budgets for carbonate mounds, p. 529–534.In C. Gabrie, J. L. K. Toffart, and B. Salvat (eds.), 6th International Symposium on Coral Reefs, International Society for Reef Studies, Townsville, Australia.

  • Bosence, D. W. J. 1995. Anatomy of a recent biodetrital mudmound, Florida Bay, USA.Special Publications of the International Association for Sedimentology 23:475–493.

    Google Scholar 

  • Bosence, D. W. J., R. Rowlands, andM. J. Quine. 1985. Sedimentology and budget of a recent carbonate mound, Florida Keys.Sedimentology 32:317–343.

    Article  Google Scholar 

  • Boucher, G., J. Clavier, C. Hily, andJ. P. Gattuso. 1998. Contribution of soft-bottoms to the community metabolism (primary production and calcification) of a barrier reef flat (Moorea, French Polynesia).Journal of Experimental Marine Biology and Ecology 225:269–283.

    Article  Google Scholar 

  • Boyer, J. N., J. W. Fourqurean, andR. D. Jones. 1999. Seasonal and long-term trends in water quality of Florida Bay (1989–1997).Estuaries 22:417–430.

    Article  CAS  Google Scholar 

  • Brewster-Wingard, G. L. andS. E. Ishman. 1999. Historical trends in salinity and substrate in Central Florida Bay: A paleoecological reconstruction using modern analogue data.Estuaries 22: 369–383.

    Article  Google Scholar 

  • Broecker, W. S. andT. Takahashi. 1966. Calcium carbonate precipitation on the Bahama Banks.Journal of Geophysical Research 71:1575–1602.

    CAS  Google Scholar 

  • Cesar, H. S. J. andP. J. H. van Beukering. 2004. Economic valuation of the coral reefs of Hawaii.Pacific Science 58:231–242.

    Article  Google Scholar 

  • Chisholm, J. R. M. andJ. P. Gattuso. 1991. Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities.Limnology and Oceanography 36:1232–1239.

    CAS  Google Scholar 

  • Corbett, D. R., J. Chanton, W. Burnett, K. Dillon, andC. Rutkowski. 1999. Patterns of groundwater discharge into Florida Bay.Limnology and Oceanography 44:1045–1055.

    CAS  Google Scholar 

  • Corbett, D. R., K. Dillon, W. Burnett, andJ. Chanton. 2000. Estimating the groundwater contribution into Florida Bay via natural tracers,222Rn and CH4.Limnology and Oceanography 45:1546–1557.

    CAS  Google Scholar 

  • Dickson, A. G. 1990. Standard potential of the reaction: AgCl(s)+1/2H2(g)=Ag(s)+HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic seawater from 273.15–318.15 K.Journal of Chemical Thermodynamics 22:113–127.

    Article  CAS  Google Scholar 

  • Dickson, A. G., J. D. Afghan, andG. C. Anderson. 2003. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity.Marine Chemistry 80:185–197.

    Article  CAS  Google Scholar 

  • Dickson, A. G. andF. J. Millero. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media.Deep-Sea Research 34:1733–1743.

    Article  CAS  Google Scholar 

  • Fourqurean, J. W., R. D. Jones, andJ. C. Zieman. 1995. Processes influencing water column nutrient characteristics and phosphorous limitation of phytoplankton biomass in Florida Bay, FL, USA: Inferences from spatial distributions.Estuarine Coastal and Shelf Science 36:295–314.

    Article  Google Scholar 

  • Fourqurean, J. W. andM. B. Robblee. 1999. Florida Bay: A history of recent ecological changes.Estuaries 22:345–357.

    Article  CAS  Google Scholar 

  • Frankovich, T. A. andJ. C. Zieman. 1994. Total epiphyte and epiphytic carbonate production onThalassia testudinum across Florida Bay.Bulletin of Marine Science 54:679–695.

    Google Scholar 

  • Friedlander, A. M. andJ. D. Parrish. 1998. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef.Journal of Experimental Marine Biology and Ecology 224:1–30.

    Article  Google Scholar 

  • Gattuso, J. P., M. Frankignoulle, andR. Wollast. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems.Annual Reviews of Ecological Systems 29:405–434.

    Article  Google Scholar 

  • Gattuso, J. P., C. E. Payri, M. Pichon, B. Delesalle, andM. Frankignoulle. 1997. Primary production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia).Journal of Phycology 33:729–738.

    Article  Google Scholar 

  • Gattuso, J. P., M. Pichon, B. Delesalle, andM. Frankignoulle. 1993. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia).Marine Ecology Progress Series 96:259–267.

    Article  Google Scholar 

  • Ginsburg, R. N. 1979. In P. Enos and R. Perkins (eds.), Evolution of Florida Bay from island stratigraphy.Geological Society of America Bulletin 90:59–83.

  • Halley, R. B. andL. M. Roulier. 1999. Reconstructing the history of Eastern and Central Florida Bay using mollusk-shell isotope records.Estuaries 22:358–368.

    Article  Google Scholar 

  • Halley, R. B., K. K. Yates, and C. H. Holmes. 2001. Sea-level rise and the future of Florida Bay in the next century, p. 103–104.In U.S. Geological Survey Program on the South Florida Ecosystem: 2000 Proceedings. U.S. Geological Survey Open-File Report 00-449. Washington, D.C.

  • Kleypas, J. A., J. W. McManus, andL. A. B. Menez. 1999. Environmental limits to coral reef development: Where do we draw the line?American Zoology 39:146–159.

    Google Scholar 

  • Ku, T. C. W., L. M. Walter, M. L. Coleman, R. E. Blake, andA. M. Martini. 1999. Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water, sulfate, South Florida Platform, U.S.A.Geochimica et Cosmochimica Acta 63:2529–2546.

    Article  CAS  Google Scholar 

  • Leclercq, N., J. P. Gattuso, andJ. Jaubert. 2002. Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure.Limnology and Oceanography 47:558–564.

    CAS  Google Scholar 

  • Lewis, E. and D. W. R. Wallace. 1998. Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. U. S. Department of Energy, ORNL/CDIAC-105. Oak Ridge, Tennessee.

  • Marsh, J. A. andS. V. Smith. 1978. Productivity measurements of coral reefs in flowing water, p. 361–377.In D. R. Stoddart and R. E. Johannes (eds.), Coral Reefs: Research Methods. United Nations Educational, Scientific and Cultural Organization, Paris, France.

    Google Scholar 

  • McIvor, C. C., J. A. Ley, andR. D. Bjork. 1994. Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes: A review, p. 117–146.In S. M. Davis and J. C. Ogden (eds.), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • Merbach, C., C. H. Culberson, J. E. Hamley, andR. M. Pytkowicz. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.Limnology and Oceanography 18:897–907.

    Google Scholar 

  • Millero, F. J. 1996. Chemical Oceanography, 2nd edition, CRC Press, New York.

    Google Scholar 

  • Millero, F. J., W. T. Hoscock, F. Huang, R. Roche, andJ. Z. Zhang. 2001. Seasonal variation of the carbonate system in Florida Bay.Bulletin of Marine Science 68:101–123.

    Google Scholar 

  • Millero, F. J., J. Zhang, K. Lee, andD. M. Campbell. 1993. Titration alkalinity of seawater.Marine Chemistry 44:153–165.

    Article  CAS  Google Scholar 

  • Nelson, J. E. andR. N. Ginsburg. 1986. Calcium carbonate production by epibionts onThalassia in Florida Bay.Journal of Sedimentary Petrology 56:622–628.

    Google Scholar 

  • Nuttle, W. K., J. W. Fourqurean, B. J. Cosby, J. C. Zieman, andM. B. Roblee. 2000. Influence of net freshwater supply on salinity in Florida Bay.Water Resources Research 36:1805–1822.

    Article  Google Scholar 

  • Prager, E. J. andR. B. Halley. 1999. The influence of seagrass on shell layers and Florida Bay mudbanks.Journal of Coastal Research 15:1151–1162.

    Google Scholar 

  • Robbins, J. A., C. Holmes, R. Halley, M. Bothner, E. Shinn, J. Graney, G. Keeler, M. Lenbrink, K. A. Orlandini, andD. Rudnick. 2000. Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay.Journal of Geophysical Research 105:28805–28822.

    Article  CAS  Google Scholar 

  • Rude, P. D. andR. C. Aller. 1991. Fluorine mobility during early diagenesis of carbonate sediment: An indicator of mineral transformation.Geochimica et Cosmochimica Acta 55:2491–2509.

    Article  CAS  Google Scholar 

  • Shinn, E. A., C. D. Reich, andT. D. Hickey. 2002. Seepage meters and Bernoulli's revenge.Estuaries 25:126–132.

    Article  Google Scholar 

  • Smith, S. V. 1973. Carbon dioxide dynamics: A record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community.Limnology and Oceanography 18: 106–120.

    CAS  Google Scholar 

  • Smith, S. V. andS. G. Key. 1975. Carbon dioxide and metabolism in marine environments.Limnology and Oceanography 20: 493–495.

    Article  CAS  Google Scholar 

  • Smith, S. V. andD. W. Kinsey. 1976. Calcium carbonate production, coral reef growth, and sea level change.Science 194:937–939.

    Article  CAS  Google Scholar 

  • Stockman, K. W., R. N. Ginsburg, andE. A. Shinn. 1967. The production of lime mud by algae in South Florida.Journal of Sedimentary Petrology 37:633–648.

    CAS  Google Scholar 

  • Swart, P. K. andR. Price. 2002. Origin of salinity variations in Florida Bay.Limnology and Oceanography 47:1234–1241.

    Article  CAS  Google Scholar 

  • U.S. Army Corps of Engineers. 1999. Central and Southern Florida Project Comprehensive Review Study. U.S. Army Corps of Engineers-Jacksonville District, South Florida Water Magement District. www.evergladesplan.org.

  • Walker, D. I. andW. J. Woelkerling. 1988. A quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia.Marine Ecology Progress Series 43:71–77.

    Article  CAS  Google Scholar 

  • Walter, L. M., S. A. Bischof, W. P. Patterson, andT. W. Lyons. 1993. Dissolution andrecrystallization in modern shelf carbonates: Evidence from pore water and solid phase chemistry.Philosophical Transactions of the Royal Society of London A 344:27–36.

    Article  CAS  Google Scholar 

  • Walter, L. M. andE. A. Burton. 1990. Dissolution of recent platform carbonate sediments in marine pore fluids.American Journal of Science 290:601–643.

    Article  Google Scholar 

  • Wanless, H. R. andM. G. Tagett. 1989. Origin, growth, and evolution of carbonate mudbanks in Florida Bay.Bulletin of Marine Science 44:454–489.

    Google Scholar 

  • Yao, W. andR. H. Byrne. 1998. Simplified seawater alkalinity analysis: Use of linear array spectrometers.Deep-Sea Research I 45:1383–1392.

    Article  CAS  Google Scholar 

  • Yates, K. K. andR. B. Halley. 2003. Measuring coral reef community metabolism using new benthic chamber technology.Coral Reefs 22:247–255.

    Article  Google Scholar 

  • Zieman, J. C., J. W. Fourqurean, andT. A. Frankovich. 1999. Seagrass die-off in Florida Bay: Long-term trends in abundance and growth of turtle grass,Thalassia testudinum.Estuaries 22:460–470.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly K. Yates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yates, K.K., Halley, R.B. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay. Estuaries and Coasts: J ERF 29, 24–39 (2006). https://doi.org/10.1007/BF02784696

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784696

Keywords

Navigation