Skip to main content
Log in

Subcellular distribution of protein kinase C (pKC) in erythrocytes and concentration ofd-myo-inositol-1,4,5-trisphosphate (IP3) in platelets and monocytes of force-fed zinc-deficient rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of the present study was to investigate whether alimentary zinc (Zn) deficiency affects the activities of the Zn metalloenzymes protein kinase C (pKC) and the phosphatidylinositol-specific phospholipase C (PLC) in force-fed Zn-deficient rats. The in vivo activity of pKC was determined by measuring the subcellular distribution of the enzyme between the cytosolic and the particulate fraction of erythrocytes, whereas the activity of PLC was measured indirectly through the concentration of its metabolite inositol-1,4,5-trisphosphate (IP3) in platelets and monocytes. For this purpose, 24 male Sprague-Dawley rats with an average live mass of 126 g were divided into 2 groups of 12 animals each. The Zn-deficient and the control rats received a semisynthetic casein diet with a Zn content of 1.2 and 24.1 ppm, respectively. All animals were fed the same amount of the diet (10.8 g dry matter [DM]/d and rat) four times daily by gastric tube. After 12 d, the depleted rats were in a state of severe Zn deficiency, as demonstrated by a 70% lower Zn concentration and a 66% reduction in the serum activity of alkaline phosphatase. The radioimmunologically determined concentration of IP3 was reduced by a significant 55% in the platelets of the Zn-deficient rats (8.4 pmol IP3/5·108) as compared with the control rats (18.8 pmol IP3/5·108), whereas the IP3 concentration in the monocytes was not affected by the alimentary Zn supply (1.4 vs 1.2 pmol IP3/106), nor was there any difference between the Zn-deficient and the control rats with regard to the radioenzymatically determined specific activity of pKC, either in the cytosolic fraction (32.7 vs 32.5 pmol P/min/mg protein) or in the particulate fraction (38.1 vs 36.5 pmol P/min/mg protein) of the erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Moser, H.-P. Roth, and M. Kirchgessner, Influence of alimentary zinc deficiency on the concentration of the second messengers D-myo-inositol-1,4,5-trisphosphate (IP3) and s,n-1,2-diacylglycerol (DAG) in testes and brain of force-fed rats,Biol. Trace Element Res., accepted (1996).

  2. A. C. Ottolenghi, Phospholipase C from Bacillus cereus, a zinc requiring metalloenzyme,Biochim. Biophys. Acta 106, 510–518 (1965).

    PubMed  CAS  Google Scholar 

  3. A. B. Otnaess, H. Prydz, E. Bjorklid, and A. Berre, Phospholipase C from Bacillus cereus and its use in studies of tissue thromboplastin,Eur. J. Biochem. 27, 238–243 (1972).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Nishizuka, The molecular heterogeneity of protein kinase C and its implications for cellular regulation,Nature 334, 661–665 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Nishizuka, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C,Science 258, 607–614 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. R. M. Bell, Protein kinase C activation by diacylglycerol second messengers,Cell 45, 631, 632 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. R. Zidovetzki and D. S. Lester, The mechanism of activation of protein kinase C: a biophysical perspective,Biochim. Biophys. Acta 1134, 261–272 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. P. Csermely, M. Szamel, K. Resch, and J. Somogyi, Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes.J. Biol. Chem. 263, 6487–6490 (1988).

    PubMed  CAS  Google Scholar 

  9. P. D. Zalewski, I. J. Forbes, C. Giannakis, P. A. Cowled, and W. H. Betts, Synergy between zinc and phorbol ester in translocation of protein kinase C to cytoskeleton,FEBS Lett. 273, 131–134 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. P. D. Zalewski, I. J. Forbes, C. Giannakis, and W. H. Betts, Regulation of protein kinase C by Zn2+-dependent interaction with actin,Biochem. Int. 24, 1103–1110 (1991).

    PubMed  CAS  Google Scholar 

  11. I. J. Forbes, P. D. Zalewski, C. Giannakis, and W. H. Betts, Zinc induces specific association of PKC with membrane cytoskeleton,Biochem. Int. 22, 741–748 (1990).

    PubMed  CAS  Google Scholar 

  12. M. Kirchgessner, C. Moser, and H.-P. Roth, Activity and subcellular distribution of protein kinase C (PKC) in muscle and brain of force-fed zinc-deficient rats,Biol. Trace Element Res. accepted (1996).

  13. H.-P. Roth and M. Kirchgessner, Influence of zinc deficiency on the osmotic fragility of erythrocyte membranes of force-fed rats,Trace Element Electrolytes 11, 46–50 (1994).

    CAS  Google Scholar 

  14. A. Boge, H.-P. Roth, and M. Kirchgessner, Zur Verteilung des Zinks im Blut von an Zink depletierten Ratten,J. Anim. Physiol. Anim. Nutr. 67, 225–229 (1992).

    CAS  Google Scholar 

  15. G. Behrens and J. Pallauf, Einfluß eines alimentären Zinkmangles auf die Lipidzusammensetzung der Erythrozytenmembran wachsender Ratten,J. Anim. Physiol. Anim. Nutr. 68, 156–164 (1992).

    CAS  Google Scholar 

  16. G. L. Johanning and B. L. O'Dell, Effect of zinc deficiency and food restriction in rats on erythrocyte membrane zinc, phospholipid and protein content,J. Nutr. 119, 1654–1660 (1989).

    PubMed  CAS  Google Scholar 

  17. A. S. Prasad,Biochemistry of Zinc, Plenum, New York, p. 214 (1993).

    Google Scholar 

  18. A. Schülein, M. Kirchgessner, and H.-P. Roth, Auswirkungen eines alimentären Zinkmangels bei zwangsernährten Ratten auf Wachstum, Zinkstatus und Serumkonzentrationen von Insulin und Glucagon,J. Anim. Physiol. Anim. Nutr. 67, 157–169 (1992).

    Article  Google Scholar 

  19. E. S. Sharpes and R. L. McCarl, A high-performance liquid chromatographic method to measure32P incorporation into phosphorylated metabolites in cultured cells,Anal. Biochem. 124, 421–424 (1982).

    Article  Google Scholar 

  20. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk, Measurement of protein using bicinchoninic acid,Anal. Biochem. 150, 76–85 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. J. Pallauf and M. Kirchgessner, Experimenteller Zinkmangel bei wachsenden Ratten. 2. Mitteilung: Zum Stoffwechsel des Zinks im tierischen Organismus,Z. Tierphysiol. Tierernährg. Futtermittelkde. 28, 128–139 (1971).

    CAS  Google Scholar 

  22. M. Kirchgessner and H.-P. Roth, Beziehungen zwischen klinischen Mangelsymptomen und Enzymaktivitäen bei Zinkmangel,Zbl. Vet. Med. A 22, 14–26 (1975).

    CAS  Google Scholar 

  23. E. Hough, L. K. Hansen, B. Birknes, K. Jynge, S. Hansen, A. Hordvik, C. Little, E. Dodson, and Z. Derewenda, High resolution (1,5 A) crystal structure of phospholipase C from Bacillus cereus,Nature 338, 357–360 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. T. Johansen, T. Holm, P. H. Guddal, K. Sletten, F. B. Haugli, and C. Little, Cloning and sequencing of the gene encoding the phosphatidylcholine-preferring phospholipase C of Bacillus cereus,Gene 65, 293–304 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. L. Levine, D. M. Xiaou, and C. Little, Increased arachidonic metabolites from cells in culture after treatment with phospholipase C from Bacillus cereus,Prostaglandins 34, 633–642 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. J. E. Coleman, Zinc proteins: enzymes, storage proteins, transcritpion factors and replication proteins,Ann. Rev. Biochem. 61, 897–946 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. M. T. Diaz-Meco, I. Dominguez, L. Sanz, M. M. Municio, E. Berra, M. E. Cornet, A. Garcia De Herreros, T. Johansen, and J. Moscat, Phospholipase C mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor β1 inhibitory signals,Mol. Cell. Biol. 12, 302–308 (1992).

    PubMed  CAS  Google Scholar 

  28. S. Hansen, E. Hough, L. A. Svensson, J.-L. Wong, and S. F. Martin, Crystal structure of phospholipase C from Bacillus cereus complexed with a substrate analog,J. Mol. Biol. 234, 179–187 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. M. J. Millar, M. I. Fischer, P. V. Elcoate, and C. A. Mawson, The effect of dietary zinc deficiency on the reproductive system of male rats,Canad. J. Biochem. Physiol. 36, 557–564 (1958).

    PubMed  CAS  Google Scholar 

  30. M. P. Macapinlac, W. N. Pearson, and W. J. Darby, Some characteristics of zinc deficiency in the albino rat, inZinc Metabolism, A. S. Prasad, ed., Springfield, IL, pp. 142–168 (1966).

  31. H.-P. Roth and M. Kirchgessner, Calmodulin, zinc and calcium concentration in tissues of zinc- and calcium-deficient rats,J. Trace Element Electrolytes Health Dis. 2, 73–78 (1988).

    CAS  Google Scholar 

  32. J. Apgar, Zinc and reproduction: un apdate,J. Nutr. Biochem. 3, 266–278 (1992).

    Article  CAS  Google Scholar 

  33. B. L. O'Dell and M. Emery, Compromised zinc status in rats adversely affects calcium metabolism in platelets,J. Nutr. 121, 1763–1768 (1991).

    PubMed  Google Scholar 

  34. P. R. Gordon, and B. L. O'Dell, Rat platelet aggregation impaired by short-term zinc deficiency,J. Nutr. 110, 2125–2129 (1980).

    PubMed  CAS  Google Scholar 

  35. P. R. Gordon, and B. L. O'Dell, Zinc deficiency and impaired platelet aggregation in guinea pigs,J. Nutr. 113, 239–245 (1983).

    PubMed  CAS  Google Scholar 

  36. M. P. Emery, J. D. Browning, and B. L. O'Dell, Impaired hemostasis and platelet function in rats fed low zinc diets based on egg white protein,J. Nutr. 120, 1062–1067 (1990).

    PubMed  CAS  Google Scholar 

  37. Y. Uemura, M. Sakon, J. Kambayashi, T. Tsujinaka, and T. Mori, Involvement of inositol 1,4,5-trisphosphate in Ca2+-influx in thrombin stimulated human platelets,Biochem. Int. 18, 335–341 (1989).

    PubMed  CAS  Google Scholar 

  38. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology,Physiol. Reviews 73, 79–118 (1993).

    CAS  Google Scholar 

  39. T. H. Naber, C. J. Van Den Hamer, W. J. Van Den Broek, and J. H. Van Tongeren, Zinc uptake by blood cells of rat in zinc deficiency and inflammation,Biol. Trace Element Res. 35, 137–152 (1992).

    CAS  Google Scholar 

  40. J. C. Wallwork, Appraisal of the methodology and applications for measurement of the zinc content of blood components as indicators of zinc status,Biol. Trace Element Res. 12, 335–350 (1987).

    CAS  Google Scholar 

  41. D. B. Milne, N. V. Ralston, and J. C. Wallwork, Zinc content of blood cellular components and lymph node and spleen lymphocytes in severely zinc-deficient rats,J. Nutr. 115, 1073–1078 (1985).

    PubMed  CAS  Google Scholar 

  42. J. J. Wirth, P. J. Fraker, and F. Kierszenbaum, Changes in the levels of marker expression by mononuclear phagocytes in zinc-deficient mice,J. Nutr. 114, 1826–1833 (1984).

    PubMed  CAS  Google Scholar 

  43. P. J. Fraker, P. Jardieu, and J. Cook, Zinc deficiency and immune function,Arch. Dermatology 123, 1699–1701 (1987).

    Article  CAS  Google Scholar 

  44. P. J. Fraker, Zinc deficiency: a common immunodeficiency state,Survey Immunol. Res. 2, 155–163 (1983).

    CAS  Google Scholar 

  45. J. M. Cook-Mills and P. J. Fraker, Functional capacity of the residual lymphocytes from zinc-deficient adult mice,Br. J. Nutr. 69, 835–848 (1993).

    Article  PubMed  CAS  Google Scholar 

  46. I. J. Forbes, P. D. Zalewski, C. Giannakis, H. S. Petkoff, and P. A. Cowled, Interaction between protein kinase C and regulatory ligand is enhanced by a chelatable pool of cellular zinc,Biochim. Biophys. Acta 1053, 113–117 (1990).

    Article  PubMed  CAS  Google Scholar 

  47. W. J. Bettger and C. G. Taylor, Effects of copper and zinc status of rats on the concentration of copper and zinc in the erythrocyte membrane,Nutr. Res. 6, 451–457 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, H.P., Moser, C. & Kirchgessner, M. Subcellular distribution of protein kinase C (pKC) in erythrocytes and concentration ofd-myo-inositol-1,4,5-trisphosphate (IP3) in platelets and monocytes of force-fed zinc-deficient rats. Biol Trace Elem Res 53, 225–234 (1996). https://doi.org/10.1007/BF02784558

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784558

Index Entries

Navigation