Skip to main content
Log in

Calcium, magnesium, and phosphorus content of hair from two populations of rhesus monkeys

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The use of hair for the assessment of human mineral nutritional status is controversial, yet has potential because of the ease of collection and storage, and the high concentration of minerals in hair. This study generated baseline values for hair macromineral content in the most commonly used primate model for human nutrition and disease, the rhesus monkey. Hair digests from monkeys in Maryland (n=98) and Puerto Rico (n=208) were analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Significant differences existed between the two populations for hair calcium (Ca), magnesium (Mg), and phosphorus (P) (P<0.01,P<0.001,P<0.02). Male hair had higher concentrations of Mg in specimens from the Puerto Rican population (P<0.001), whereas hair phosphorus was higher in female hair (P<0.02). There were no significant differences attributable to pregnancy status. Differences in hair content attributable to categorical age were found for Ca and Mg (P<0.001,P<0.01). Significant location differences paralleled dietary differences. These values therefore can be considered reference ranges for hair Ca, Mg, and P for free-ranging and caged rhesus monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Hambidge, Hair analyses: worthless for vitamins, limited for minerals,Am. J. Clin. Nutr. 36, 943–949 (1982).

    PubMed  CAS  Google Scholar 

  2. A. Taylor, Usefulness of measurements of trace elements in hair,Ann. Clin. Biochem. 23, 364–378 (1986).

    PubMed  CAS  Google Scholar 

  3. M. Anke, Major and trace elements in cattle hair as an indicator of Ca, Mg, P, K, Na, Fe, Zn, Mn, Cu, Mo and CO3. Effect of additional supplements on mineral composition of cattle hair,Arch. Tierzucht 16, 57–68 (1966).

    CAS  Google Scholar 

  4. D. K. Combs, R. D. Goodrich, and J. C. Meiske, Mineral concentrations in hair as indicators of mineral status: a review,J. A. Sci. 54(2), 391–398 (1982).

    CAS  Google Scholar 

  5. W. J. Miller, Zinc nutrition of cattle: a review,J. Dairy Sci. 53, 1123–1135 (1970).

    Article  PubMed  CAS  Google Scholar 

  6. C. C. O'Mary, M. C. Bell, N. N. Snead, and W. T. Butts, Jr., Influence of ration copper on minerals in the hair of Hereford and Holstein calves,J. Anim. Sci. 31, 626–632 (1970).

    Google Scholar 

  7. R. C. Dorn, J. O. Phillips, I. I. Pierce, and G. R. Chase, Cadmium, copper, lead and zinc in bovine hair in the new lead belt of Missouri,Bull. Environ. Contam. Toxicol. 12, 626–632 (1974).

    Article  PubMed  CAS  Google Scholar 

  8. J. W. Huckabee, F. O. Cartan, G. S. Kennington, and F. J. Camenzind, Mercury concentration in the hair of coyotes and rodents in Jackson Hole, WY,Bull. Environ. Contam. Toxicol. 9, 37–43 (1973).

    Article  PubMed  CAS  Google Scholar 

  9. J. Jaworowski, J. B. Bilkiewicz, and W. Kostanecki, The uptake of210Pb by resting and growing hair,Int. J. Radiat. Biol. 11, 563–566 (1966).

    Article  CAS  Google Scholar 

  10. H. C. Hanson and R. L. Jones,The Biogeochemistry of Blue Snow and Ross' Geese, Southern Illinois University Press, Carbondale, IL (1976).

    Google Scholar 

  11. J. P. Kelsall, W. J. Pannekoek, and R. Burton, Chemical variability in plumage of wild lesser snow geese,Can J. Zool. 52(9), 1369–1375 (1975).

    Article  Google Scholar 

  12. J. P. Kelsall, W. J. Pannekoek, and R. Burton, Variability in the chemical content of waterfowl plumage,Can. J. Zool. 53(10), 1379–1386 (1975).

    PubMed  CAS  Google Scholar 

  13. W. J. Pannekoek; J. P. Kelsall, and R. Burton, Methods for analyzing feathers for elemental content, Canada Fisheries and Marine Service Technical Report No. 498–510 (1974).

  14. K. M. Hambidge, M. L. Franklin, and J. A. Jacobs, Hair chromium concentration: effects of sample washing and external environment,Am. J. Clin. Nutr. 25, 384–389 (1972).

    PubMed  CAS  Google Scholar 

  15. J. M. McKenzie, Alteration of the zinc and copper concentration of hair,Am. J. Clin. Nutr. 31, 470–476 (1978).

    PubMed  CAS  Google Scholar 

  16. S. M. DeAntonio, S. A. Katz, D. M. Scheiner, and J. D. Wood, Anatomically-related variations in trace-metal concentrations in hair,Clin. Chem. 28, 2411–2413 (1982).

    PubMed  CAS  Google Scholar 

  17. H. A. Schroeder and A. P. Nason, Trace minerals in human hair,J. Invest. Dermatol. 52, 71–78 (1969).

    Article  Google Scholar 

  18. D. C. Hilderbrand and D. H. White, Trace elements analysis in hair, An evaluation,Clin. Chem. 20, 148–151 (1974).

    PubMed  CAS  Google Scholar 

  19. M. Laker, On determining trace element levels in man: the use of blood and hair,Lancet 8292, 260–262 (1982).

    Article  Google Scholar 

  20. H. H. Sky-Peck and B. J. Joseph, The ‘use’ and ‘misuse’ of human hair in trace metal analysis, inChemical Toxicology and Clinical Chemistry of Metals, S. S. Brown and J. Savory, eds., Academic, London, pp. 159–163 (1983).

    Google Scholar 

  21. C. W. Bales, J. H. Freeland-Graves, S. Askey, F. Behmardi, R. S. Pobocik, J. J. Fickel, and P. Greenlee, Zinc, magnesium, copper and protein concentrations in human saliva: age- and sex-related differences,Am. J. Clin. Nutr. 51, 462–469 (1990).

    PubMed  CAS  Google Scholar 

  22. J. C. Smith, Jr., Methods in trace element research, inTrace Elements in Human and Animal Nutrition, vol. 1, W. Mertz, ed., Academic, New York, pp. 21–56 (1987).

    Google Scholar 

  23. W. W. Dawson, R. D. Stratton, R. Parmer, H. M. Engel, G. M. Hope, and M. J. Kessler, Tissue responses of the monkey retina: tuning and dependence on inner layer integrity,Invest. Ophthalmol. Vis. Sci. 27, 734–745 (1986).

    PubMed  CAS  Google Scholar 

  24. C. F. Howard, Jr., M. J. Kessler, S. Schwartz, Carbohydrate impairment and insulin secretory abnormalities amongMacaca mulatta from Cayo Santiago,Am. J. Primatol. 11, 147–162 (1986).

    Article  CAS  Google Scholar 

  25. M. J. Kessler and R. G. Rawlins, Congenital cataracts in a free-ranging rhesus monkey,J. Med. Primatol. 14, 225–228 (1985).

    PubMed  CAS  Google Scholar 

  26. M. J. Kessler, J. E. Turnquist, K. P. H. Pritzker, and W. T. London, Reduction of passive extension and radiographic evidence of degenerative knee joint diseases in cageraised and free-ranging aged rhesus monkeys (Macaca mulatta).J. Med. Primatol. 15, 1–9 (1986).

    PubMed  CAS  Google Scholar 

  27. S. J. Soumi, J. M. Scanlan, L. R. Rasmussen, M. Davidson, S. Boinski, J. D. Higley, and B. Marriott, Pituitary-adrenal response to capture in Cayo Santiago-derived Group M rhesus monkeys,PRHSJ 8(1), 171–176 (1989).

    Google Scholar 

  28. W. J. Pories and W. H. Strain, Zinc levels of hair as tools in zinc metabolism, inZinc Metabolism, A. S. Prasad, ed., C. C. Thomas Press, Springfield, IL, pp. 363–382 (1966).

    Google Scholar 

  29. National Research Council, A guide for the care and use of laboratory animals. A report of the Institute of Laboratory Animal Resources Committee on Care and Use of Laboratory Animals,National Institute of Health Publ. 85–23 (1985).

  30. M. J. Kessler and R. G. Rawlins, The hemogram, serum biochemistry and electrolyte profile of the free-ranging Cayo Santiago rhesus macaques (Macaca mulatta), Am. J. Primatol. 4, 107–116 (1983).

    Article  CAS  Google Scholar 

  31. V. O. Hurme, Estimation of monkey age by dental formula,Ann. NY Acad. Sci. 85, 795–799 (1960).

    Article  PubMed  CAS  Google Scholar 

  32. V. O. Hurme and G. Van Wagenen, Basic data on the emergence of permanent teeth in the rhesus monkey,Proc. Am Phil. Soc. 105, 105–108 (1961).

    Google Scholar 

  33. J. A. Gavan and C. Hutchinson, The problem of age estimation: a study using rhesus monkeys (Macaca mulatta), Am. J. Phys. Anthrop. 38, 69–82 (1973).

    Article  PubMed  CAS  Google Scholar 

  34. J. H. Kirk, Growth of maturingMacaca multtta.Lab. Anim. Sci. 22(4), 573–575 (1972).

    PubMed  CAS  Google Scholar 

  35. G. Van Wagenen and H. R. Catchpole, Physical growth of the rhesus monkey,Am. J. Phys. Anthrop. 14, 245–273 (1956).

    Article  Google Scholar 

  36. D. J. Diersche, G. Weiss, and E. Knobil, Sexual maturation in the female rhesus monkey and development of estrogen-induced gonadotropic hormone release,Endocrinology 94, 198–206 (1974).

    Article  Google Scholar 

  37. D. L. Foster, Luteinizing hormone and progesterone secretions during sexual maturation of the rhesus monkey: short luteal phases during initial menstrual cycle,Biol. Reprod. 17, 586–590 (1977).

    Article  Google Scholar 

  38. J. A. Resko, Plasma androgen levels of the rhesus monkey: effects of age and season,Endocrinology 81, 1203–1212 (1967).

    PubMed  CAS  Google Scholar 

  39. G. Van Wagenen, Body weight and length of the newborn laboratory rhesus monkey (Macaca mulatta), Fed. Proc. 13, 157–165 (1954).

    Google Scholar 

  40. B. M. Marriott, Time budgets of rhesus monkeys (Macaca mulatta) in a forest habitat in Nepal and on Cayo Santiago, inEcology and Behavior of Food-Enhanced Primate Groups, J. E. Southwick and C. H. Fa, eds., Alan R. Liss, New York, pp. 125–149 (1988).

    Google Scholar 

  41. S. H. Vessey and J. A. Morrison, Molt in free-ranging rhesus monkeys,Macaca mulatta, J. Mammal 51 (1), 89–93 (1970).

    Article  Google Scholar 

  42. W. Craelius, R. M. Jacobs, and A. O. L. Jones, Mineral composition of brains of normal and multiple sclerosis victims,Proc. Soc. Exp. Biol. Med. 165, 327–329 (1980).

    PubMed  CAS  Google Scholar 

  43. A. O. L. Jones, R. M. Jacobs, B. E. Fry, Jr., J. W. Jones, and J. H. Gould, Elemental content of predigested liquid protein products,Am. J. Clin. Nutr. 33, 2545–2550 (1980).

    PubMed  CAS  Google Scholar 

  44. A. O. L. Jones, R. M. Jacobs, N. B. Ranney, and E. L. Summers, Commercial diagnostic hair analysis: accuracy or fantasy—a case study, inTrace Element Analytical Chemistry in Medicine and Biology, vol. 5, P. Bratter and P. Schramel, eds., Walter de Gruyter, Berlin, pp. 251–260 (1988).

    Google Scholar 

  45. T. W. Clark and J. W. Huckabee, Elemental hair analysis of Japanese macaques transplanted to the United States,Primates 18(2), 299–303 (1977).

    Article  CAS  Google Scholar 

  46. W. R. Wolf, Quality assurance for trace element analysis, inTrace Elements in Human and Animal Nutrition, vol. 1, W. Mertz, ed., Academic, New York, pp. 57–78 (1987).

    Google Scholar 

  47. G. Keppel,Design and Analysis. A Researcher's Handbook, Prentice-Hall, Englewood Cliffs, NJ (1973).

    Google Scholar 

  48. G. W. Snedecor and W. G. Cochran,Statistical Methods, 6th ed. Iowa State University Press, Ames, IA (1967).

    Google Scholar 

  49. B. J. Winer,Statistical Principles in Experimental Design, 2nd ed. McGraw-Hill, New York, (1971).

    Google Scholar 

  50. L. Wilkinson,Systat: The System for Statistics. Systat Inc., Evanston, IL (1987).

    Google Scholar 

  51. G. V. Iyengar, W. E. Kollman, and H. J. M. Bower,The Elemental Composition of Human Tissues and Body Fluids, Verlag Chemie, New York (1978).

    Google Scholar 

  52. S. N. Gershoff, R. B. McGandy, D. Suttapreyasri, C. Promkutkao, A. Nondasuta, U. Pisolyabutra, and P. Tantiwongse, Nutrition studies in Thailand. III. Trace minerals in human and rat hair,Am. J. Clin. Nutr. 30, 868–872 (1977).

    PubMed  CAS  Google Scholar 

  53. R. P. Heaney, J. C. Gallagher, C. C. Johnston, R. Neer, A. M. Parfitt, B. Chir, and G. D. Whedon, Calcium nutrition and bone health in the elderly,Am. J. Clin. Nutr. 36, 986–1013 (1982).

    PubMed  CAS  Google Scholar 

  54. J. C. Smith and J. A. Halsted, Clay ingestion (Geophagia) as a source of zinc for rats,Nutrition 100(8), 973–980 (1970).

    CAS  Google Scholar 

  55. W. B. Healy, W. J. McCabe, and G. F. Wilson, Ingested soil as a source of microelements for grazing animals,NZ J. Agricultural Res. 13, 503–521 (1970).

    CAS  Google Scholar 

  56. H. F. Mayland, A. R. Florence, R. C. Rosenau, V. A. Lazar, and H. A. Turner, Soil ingestion by cattle on semiarid range as reflected by titanium analysis of feces,J. Range Manage. 28(6), 448–452 (1975).

    Article  CAS  Google Scholar 

  57. W. B. Healy, Ingested soil and animal nutrition,Proc. NZ Grassl. Assoc. 34, 84–90 (1972).

    Google Scholar 

  58. B. M. Marriott, J. Roemer, and C. Sultana, An overview of the food intake patterns of Cayo Santiago rhesus monkeys (Macaca mulatta): report of a pilot study,PR NHL Sci. J. 8(1), 87–94 (1989).

    CAS  Google Scholar 

  59. J. F. Aloia, Exercise and skeletal health,J. Am. Geriatr. Soc. 29, 104–107 (1981).

    PubMed  CAS  Google Scholar 

  60. C. L. Donaldson, S. B. Hulley, J. M. Vogel, R. S. Hattner, J. H. Bayers, and D. E. McMillian, Effect of prolonged bed rest on bone mineral,Metabolism 19, 1071–1084 (1970).

    Article  PubMed  CAS  Google Scholar 

  61. J. M. Vogel and M. W. Whittle, Bone mineral content changes in the Skylab astronauts,AJR 126, 96–97 (1976).

    Google Scholar 

  62. G. D. Whedon and E. Shorr, Metabolic studies in paralytic acute anterior poliomyelitis. II. Alterations in calcium and phosphorus metabolism,J. Clin. Invest. 36, 966–981 (1957).

    PubMed  CAS  Google Scholar 

  63. L. E. Kazarian and H. E. Von Gierke, Bone loss as a result of immobilization and chelation: preliminary results inMacaca mulatta, Clin. Orthoped. 65, 67–75 (1969).

    CAS  Google Scholar 

  64. R. Pyke, P. B. Mack, R. A. Hoffman, W. W. Gilchrist, W. N. Hood, and G. P. Gorge, Physiologic and metabolic changes inMacaca nemestrina on two types of diets during restraint and non-restraint: III Excretion of calcium and phosphorous,Aerospace Med. 39, 704–708 (1968).

    PubMed  CAS  Google Scholar 

  65. G. V. Iyengar,Elemental Analysis of Biological Systems, vol. 1, CRC, Boca Raton, FL (1989).

    Google Scholar 

  66. G. V. Iyengar, Milestones in biological trace element research,Sci. Total Environ. 100, 1–15 (1991).

    Article  PubMed  CAS  Google Scholar 

  67. G. V. Iyengar, Reference values for the concentrations of As, Cd, Co, Cr, Cu, Fe, I, Hg, Mn, Mo, Ni, Pb, Se, and Zn in selected human tissues and body fluids,Biol. Trace Element Res. 12, 263–295 (1987).

    CAS  Google Scholar 

  68. R. S. Gibson and I. L. Gibson, Interpretation of human hair trace element concentrations,Sci. Total Environ. 39, 93–101 (1984).

    Article  PubMed  CAS  Google Scholar 

  69. L. M. Klevay, B. R. Bistrian, C. R. Fleming, and C. G. Neumann, Hair analysis in clinical and experimental medicine,Am. J. Clin. Nutr. 46, 233–236 (1987).

    PubMed  CAS  Google Scholar 

  70. P. Mason, and S. Zlotkin, Hair analysis—a critical review.Can. Med. Assoc. J. 133, 186–188 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marriott, B.M., Smith, J.C., Jacobs, R.M. et al. Calcium, magnesium, and phosphorus content of hair from two populations of rhesus monkeys. Biol Trace Elem Res 53, 147–165 (1996). https://doi.org/10.1007/BF02784552

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784552

Index Entries

Navigation