Skip to main content
Log in

Effect of magnesium supplementation and training on magnesium tissue distribution in rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 1996

Abstract

The aim of this work is to study the effect of training and Mg supplementation on body pools of Mg and on Mg tissue distribution. Forty male Wistar rats were divided into four groups (n=10): control group (C); trained group (T); Mg-supplemented group (+Mg); and trained and Mg-supplemented group (+MgT). The Mg supplement (100 ppm of Mg) was given in the drinking water for 21 d. The training consisted of swimming during 60% of maximal swimming time obtained in the first session to exhaustion, during 3 wk (5 d a week). The variables measured were: erythrocytes (RBC), hemoglobin (Hb), hematocrit (Hto), total proteins (TP), and Mg in serum, RBC, liver, muscle, bone, and kidney. There was less Mg in liver, muscle, and erythrocyte in trained animals than in control or supplemented animals (T vs C, +MgT vs C and +MgT vs +Mg) (p < 0.01). Trained antimals (T and +MgT) showed higher Mg kidney rates than the untrained ones (p<0.01). There was less bone Mg in control (C) and in supplemented and trained (+MgT) groups than in trained (T) and in supplemented (+Mg) animals (p<0.01). Serum Mg showed a decreasing concentration profile in the following order: +Mg, +MgT, T, C (p<0.01). We conclude that Mg supplementation improves bone and serum Mg levels, but this does not affect Mg status in soft tissues. Maintained exercise leads to a diminution of Mg in the aforementioned soft tissues that is not noticeable in serum, probably provoked by an increase of renal excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Elin, Assessment of magnesium status,Clin. Chem. 33, 1965–1970 (1987).

    PubMed  CAS  Google Scholar 

  2. P. W. F. Fischer and A. Giroux, An evaluation of plasma and erythrocyte magnesium concentration and the activities of alkaline phosphatase and creatine kinase as indicators of magnesium status,Clin. Biochem. 24, 215–218 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. S. W. Golf, O. Happel, and V. Graff, Plasma aldosterone, cortisol and electrolyte concentrations in physical exercise after magnesium suplementation,J. Clin. Chem. Clin. Biochem. 22, 717–721 (1984).

    PubMed  CAS  Google Scholar 

  4. P. Lijnen, P. Hespel, R. Fagard, R. Lysens, E. Van den Eynde, and A. Amery, Erythrocyte, plasma and urinary magnesium in men before and after a marathon,Eur. J. Appl. Physiol. 58, 252–256 (1988).

    Article  CAS  Google Scholar 

  5. H. Joborn, G. Akerstrom, and S. Junghall, Effects of exogenous catecholamines and exercise on plasma magnesium concentrations,Clin. Endocrinol. 23, 219–226 (1985).

    CAS  Google Scholar 

  6. G. Stendig-Lindberg, Y. Shapira, E. Graff, E. Schonberger, and W. E. C. Wacker, Delayed metabolic changes after strenuous exertion in trained young men,Magnesium Res. 3, 211–218 (1989).

    Google Scholar 

  7. A. Córdova, M. Gimenez, and J. F. Escanero, Changes of plasma zinc, copper and magnesium and acid-base balance at different times of swimming until exhaustion,J. Trace Elements Electrolytes Health Dis. 4, 189–193 (1990).

    Google Scholar 

  8. A. Córdova, L. Rabadán, and V. Villar, Serum magnesium concentrations after three maximal different exercises, inTherapeutic Drug Monitoring and Toxicology, I. Sunshine ed., Marcel-Dekker, New York, pp. 621–626 (1992).

    Google Scholar 

  9. A. Córdova, M. Gimenez, and J. F. Escanero, Magnesium distribution after maximal exercise in air and under hypoxia conditions,Magnesium Res. 5, 23–27 (1992).

    Google Scholar 

  10. A. Córdova, Changes on plasmatic and erythrocytic magnesium levels after high-intensity exercise in men,Physiol. Behav. 52, 819–821 (1992).

    Article  PubMed  Google Scholar 

  11. F. J. Navas, A. Córdova, L. Rabadán, A. Caballero, and E. Contreras, The effect of supplementation and training on magnesium distribution during exercise,Magnesium Res. 7(Suppl.) 41–42 (1994).

    Google Scholar 

  12. V. Abbasciano, F. Levato, M. G. Reali, et al., Reduction, of erythrocyte magnesium concentration in heterozygote beta-Thalassaemic subjets and in normal subjets submitted to physical stress,Magnesium Res. 1 (3/4) 213–217 (1988).

    CAS  Google Scholar 

  13. L. R. Brilla, J. H. Fredickson, and V. P. Lombardi, Effect of hypomagnesemia and exercise on slowly exchanging pools of magnesium,Metabolism 38, 797–800 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. N. Brautbar and C. Carpenter, Skeletal myopathy and magnesium depletion; cellular mechanisms.Magnesium 3, 57–61 (1984).

    PubMed  CAS  Google Scholar 

  15. C. J. Keen, P. Lowney, M. E. Gershwin, L. S. Hurley, and J. S. Stern, Dietary magnesium intake influences exercise capacity and hematologic parameters in rats,Metabolism,36, 788–793 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. R. McDonald and C. L. Keen, Iron, zinc and magnesium nutrition and athletic, performance,Sports Med. 5, 171–184 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. A. Córdova, F. J. Navas, M. Gómez-Carramiñana, and H. Rodríguez, Evaluation of magnesium intake in elite sportsmen,Magnesium Bull. 16, 59–63 (1994).

    Google Scholar 

  18. A. Córdova, F. J. Navas, and J. F. Escanero, Magnesium levels and dynamometric parameters in relation with postoperative fatigue,Magnesium Bull. 14, 98–101 (1992).

    Google Scholar 

  19. J. M. Steinacker, M. Grünert-Fucht, K. Steininger, and R. E. Wodick, Effects of long-time administration of magnesium on physical capacity,Int. J. Spots Med. 8, 151 (1987).

    Article  Google Scholar 

  20. P. Lowney, M. E. Gershwin, L. S. Hurley, J. S. Stern, and C. L. Keen, The effect of variable magnesium intake on potential factors influencing endurance capacity,Biol. Trace Elem Res. 16, 1–18 (1988).

    PubMed  CAS  Google Scholar 

  21. M. S. Clegg, C. L. Keen, B. Lönnerdal, and L. S. Hurley, Influence of ashing techniques on the analysis of trace elements in animal tissue. I Wet ashing,Biol. Trace Elem. Res. 3, 107–115 (1981).

    CAS  Google Scholar 

  22. H. Rüddel, C. Werner, and H. Ising, Impact of magnesium supplementation on performance data in young swimmers,Magnesium Res. 3, 103–107 (1989).

    Google Scholar 

  23. D. E. Corkey, J. Durzinsky, T. L. Rich, B. Matchinsky, and J. R. Williamson Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria,J. Biol. Chem. 261, 2567–2574 (1986).

    PubMed  CAS  Google Scholar 

  24. P. M. Clarkson, Minerals: exercise performance and supplementation in athletes,J. Sports. Sci. 9, 91–116 (1991).

    PubMed  Google Scholar 

  25. P. O. Wester, Magnesium,Am. J. Clin. Nutr. 45, 5–12 (1987).

    Google Scholar 

  26. A. C. Alfrey, N. L. Miller, and D. Butkus, Evaluation of body magnesium stores,J. Lab. Clin. Med. 84, 153–62 (1974).

    PubMed  CAS  Google Scholar 

  27. P. W. F. Fischer, A. Giroux, M. R. L'Abbé, and E. A. Nera, The effects of moderate magnesium deficiency in the rat,Nutr. Rep. Int. 24, 993–1000, (1981).

    CAS  Google Scholar 

  28. Y. Rayssiguier, C. Y. Guezennec, and J. Durlach, New experimental and clinical data on the relationship between magnesium and sport,Magnesium Res. 3, 93–102 (1990).

    CAS  Google Scholar 

  29. S. G. Massry, Role of hormonal and non-hormonal factors in the control of renal handling of magnesium,Magnesium Bull. 1, 277–281 (1981).

    Google Scholar 

  30. A. E. Olha, V. Klissouras, J. D. Sullivan, and S. C. Skoryna, Effect of exercise on concentration of elements in the serum,J. Sports Med. 22, 414–425 (1982).

    CAS  Google Scholar 

  31. L. R. O'Connor, K. L. Klein, and J. E. Bethune, Hiperphosphatemia in lactic acidosis,N. Engl. J. Med. 297, 707–709 (1977).

    Article  PubMed  Google Scholar 

  32. H. Galbo and M. Kjaer, Endocrinology and metabolism in exercise, future research directions,Can. J. Sport Sci. 12, 102–107 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02784183.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navas, F.J., Córdova, A. Effect of magnesium supplementation and training on magnesium tissue distribution in rats. Biol Trace Elem Res 53, 137–145 (1996). https://doi.org/10.1007/BF02784551

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784551

Index Entries

Navigation