Skip to main content
Log in

Zinc-induced alterations in contractile properties of rat diaphragm muscle in vitro

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of zinc ions on the isometric contraction of rat diaphragm muscles in the presence and in the absence of external calcium was studied. Using a transducer, the isometric force was measured as a function of supramaximal electrical stimulation, either directly or indirectly applied to the muscle. The following parameters were measured: peak twitch tension, PT, twitch contraction time, CT, relaxation half-time, RT-1/2, and peak rates of tension increase and decrease, +dP/dt and -dP/dt. The following zinc-induced alterations were observed: an increase of the PT; a decrease of the RT-1/2; an increase in the +dP/dt and -dP/dt. The CT was not changed significantly. Our results suggest that zinc ions have a positive inotropic effect on isolated diaphragm muscle. The increase in PT may be explained by a zinc-activated Ca2+ uptake by sarcoplasmic reticulum. This was followed by an increase in the rate of rise of tension development, which was secondary to increased -dP/dt. The mechanism(s) by which extracellular Ca2+ contributes to this action of zinc is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Prasad, Clinical, endocrinological and biochemical effects of zinc deficiency.Clin. Endocrinol. Med. 14, 567–589 (1985).

    Article  CAS  Google Scholar 

  2. B. L. Valle and K. A. Falchuk, The biochemical basis of zinc physiology.Physiol. Rev. 73, 79–118 (1993).

    Google Scholar 

  3. S. S. Hede, R. S. Diniz, N. V. Agshikar, and V. G. Dhume, Dual action of zinc on ileal smooth muscle. Zinc-calcium interaction.Ind. J. Physiol. Pharmacol. 30, 321–328 (1986).

    Google Scholar 

  4. E. E. Daniel, R. Massingham, and P. A. Nasmyth, The mechanism of contractile effects of ouabain and zinc on the rat uterus.J. Pharmacol. Exp. Ther. 173, 293–307 (1970).

    PubMed  CAS  Google Scholar 

  5. E. E. Daniel, S. Fair, A. M. Kidwas, and I. Polacek, Zinc and smooth muscle contractility. I. Study of the mechanisms of zinc-induced contractility changes in rat uteri.J. Pharmacol. Exp. Ther. 178, 282–289 (1971).

    PubMed  CAS  Google Scholar 

  6. C. Cho II, and G. W. Teh, The inhibitory action of zinc sulphate on the contractile activity of guinea-pig ileum.43, 294–296 (1991).

    CAS  Google Scholar 

  7. J. Cortijo, J. V. Espluques, B. Sarria, M. Marti-Cabrera, and J. Esplugues, Zinc as a calcium antagonist: A pharmacological approach in the strips of rat aorta.IRCS Med Sci. 13, 292, 293 (1985).

    CAS  Google Scholar 

  8. B. Sarria, J. Cartigo, M. Marti-Cabrera, E. Morcillo, and J. Esplugues, Antagonism of Ca2+ by zinc in guinea-pig isolated taena caeci and trachealis muscle.Br. J. Pharmacol. 97, 19–26 (1989).

    PubMed  CAS  Google Scholar 

  9. A. Sandow, S. R. Taylor, and H. Preuer, Role of the action potential in excitation-contraction coupling.Fed. Proc. Fed. Am. Soc. Exp. Biol. 24, 1116–1123 (1965).

    CAS  Google Scholar 

  10. S. R. Taylor, Vertebrate striated muscle: length-dependence of Calcium release during contraction.Eur. J. Cardiol. 4, 31–38 (1976).

    PubMed  Google Scholar 

  11. S. R. Taylor, J. R. Lopez, P. J. Griffiths, G. Trube, and G. Cecehi, Calcium in excitation-contraction coupling of frog skeletal muscle.Can. J. Physiol. Pharmacol. 60, 489–502 (1982).

    PubMed  CAS  Google Scholar 

  12. A. Isaacson and W. Sando, Effects of zinc on responses of skeletal muscle.J. Gen. Physiol. 46, 655–677 (1963).

    Article  PubMed  CAS  Google Scholar 

  13. F. R. Ciafalo and L. J. Thomas, The effects of zinc on contractility, membran potentials and cathion content of rat atria.J. Gen. Physiol. 48, 825–839 (1965).

    Article  Google Scholar 

  14. W. G. Nayler and J. E. Anderson, Effect of zinc on cardiac muscle contraction.Am. J. Physiol. 209, 17–21 (1965).

    PubMed  CAS  Google Scholar 

  15. M. Aubier, N. Viires, J. Piquet, D. Murciano, F. Planchet, C. Marty, R. Cherardi, and R. Pariente, Effects of hypocalcemia on diaphragmatic strength generation.J. Appl. Physiol. 58, 2054–2061 (1985).

    PubMed  CAS  Google Scholar 

  16. A. Gölgeli, A. CoŞkun, and Ç. özesmi, Rat diaphragm muscle contraction with and without oxygen enrichment.Res. Commun. Mol. Pathol. Pharmacol. 90, 87–95 (1995).

    PubMed  Google Scholar 

  17. A. Gölgeli, Ç. özesmi, and M. özesmi, Dependence of fatigue properties on the pattern of stimulation in the rat diaphragm muscle.Indian J. Physiol. Pharmacol. 39, 315–322 (1995).

    PubMed  Google Scholar 

  18. A. Gölgeli, Ç. özesmi, and C. Süer, Effect of acute starvation on rat diaphragm function.Jpn. J. Physiol.,44, 743–747 (1994).

    Article  PubMed  Google Scholar 

  19. N. Viires, D. Murciano, J. P. Seta, B. Dureuil, R. Parienta, and M. Aubier, Effects of calcium withdrawal on diaphragmatic fiber tension generation.J. Appl. Physiol. 64, 26–30 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. Canadian Council on Animal Care. Guide to the Care and Use of Experimental Animals. Ottawa, vol. 2 pp. 440–447 (1984).

    Google Scholar 

  21. S. G. Kelsen and M. L. Nochomowitz, Fatigue of the mammalian diaphragm in vitro.J. Appl. Physiol. 53, 440–447 (1982).

    PubMed  CAS  Google Scholar 

  22. T. Oba, J. Takagi, and K. Hatta, Effect of temperature and zinc on isometric contractile properties and electrical phenomena of frog (Rana) and xenopus skeletal muscle fibers.Can. J. Physiol. Pharmacol. 62, 1511–1517 (1984).

    PubMed  CAS  Google Scholar 

  23. J. P. Bianchi and S. Narayan, Effect of diazepam on Ca2+ translocation during physiological muscle fatique.J. Pharmacol Exp. Ther. 231, 197–205 (1984).

    PubMed  CAS  Google Scholar 

  24. G. B. Frank, Rapid loss of the twitch of frog’s skeletal muscle fibers in 0-calcium bicarbonate-buffered ringer solution.Life Sci,22, 1077–1082 (1978).

    Article  PubMed  CAS  Google Scholar 

  25. G. B. Frank, Roles of extracellular and “trigger” calciumions in excitation-contraction coupling in skeletal muscle.Can. J. Physiol. Pharmacol. 60, 427–439 (1982).

    PubMed  CAS  Google Scholar 

  26. S. A. Esau, Interaction of theophylline, verapamil and diltiazem on hamster diaphragm muscle force in vitro.Am. J. Physiol. 254, 365–371 (1988).

    Google Scholar 

  27. J. R. Blinks, R. Rudel, and S. R. Taylor, Calcium transients in isolated amphibian skeletal muscle fibers: Detection with acquonin.J. Physiol. (Lond.) 277, 291–323 (1987).

    Google Scholar 

  28. M. Endo, Calcium release from the sarcoplasmic reticulum.Physiol. Rev. 57, 71–108 (1977).

    PubMed  CAS  Google Scholar 

  29. P. R. Standfield, The effect of zinc on the gating of the delayed potassium conductance of frog sartorius muscle.J. Physiol. (Lond.) 251, 711–735 (1975).

    Google Scholar 

  30. J. R. Lopez, L. A. Wanek, and S. R. Taylor, Skeletal muscle: length dependent effects of potentiating agents.Science (Washington, DC) 214, 79–82 (1981).

    Article  CAS  Google Scholar 

  31. S. Howell, R. S. Fitzgerald, and C. H. Roussus, Effects of aminophylline, izoproteranol and neostigmine on hypercapnic depression of diaphragmatic contractility.Am. Rev. Respir. Dis. 132, 241–247 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gölgeli, A., Dursun, N., Süer, C. et al. Zinc-induced alterations in contractile properties of rat diaphragm muscle in vitro. Biol Trace Elem Res 60, 251–260 (1997). https://doi.org/10.1007/BF02784445

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784445

Index Entries

Navigation